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ABSTRACT
There has been sustained interest from both academia and industry
throughout the years due to the importance and practicability of
recommendation systems. However, several recent papers have
pointed out critical issues with the evaluation process in recom-
mender systems. Likewise, this paper takes an in-depth look at a
fundamental but often neglected aspect of the evaluation proce-
dure, i.e. the datasets themselves. To do so, we adopt a systematic
and comprehensive approach to understand the datasets used for
implicit feedback based top-K recommendation. We start by ex-
amining recent papers from top-tier conferences to find out how
different datasets have been utilised thus far. Next, we look at the
characteristics of these datasets to understand their similarities and
differences. Finally, we conduct an empirical study to determine
whether the choice of datasets used for evaluation can influence
the observations and/or conclusions obtained. Our findings sug-
gest that greater attention needs to be paid to the selection process
of datasets used for evaluating recommender systems in order to
improve the robustness of the obtained results.

CCS CONCEPTS
• Information systems → Recommender systems.
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1 INTRODUCTION
As a direct consequence of an increasingly digital lifestyle, recom-
mendation systems have gradually become an indispensable part
of our daily lives. This has brought about rapid growth in terms of
the recommendation performance across a variety of application
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scenarios, ranging from e-commerce (e.g. Amazon, eBay) to social
media (e.g. Facebook, Instagram). Furthermore, several decades of
research has led the community from simple and widely known
methods such as WMF [20] and ItemKNN [42] to more advanced
algorithms such as Mult-VAE [29] and LightGCN [15].

However, recent studies have pinpointed several worrisome prob-
lems that appear to undermine years of hard work within the rec-
ommendation systems community. First, the authors in [9] have
discovered that many recently proposed methods are in fact not
reproducible, and for the remaining methods which could be re-
produced, they are often outperformed by simpler but well-tuned
baselines. Next, [25] has shown that the results obtained from eval-
uating item recommendation using a randomly sampled subset of
candidate items, which is a common practice in recent research, can
be inconsistent with results acquired using the complete set of can-
didate items. The former, also known as sampled metrics, is no more
than a high-bias, low-variance estimator of its exact version, and
results obtained using sampled metrics can be highly misleading as
the bias is recommender-dependent. Very recently, [48] highlighted
an important issue which is often the cause of unreproducible evalu-
ation and unfair comparison, i.e. the lack of any effective benchmark
for evaluation. The authors noted that researchers often choose dif-
ferent datasets heuristically, and there are many seemingly trivial
factors, e.g. data pre-processing and splitting strategies, evaluation
metrics, etc., which can influence the recommendation performance.
Although the aforementioned studies have all brought attention to
critical issues hampering measurable progress for recommendation
in general, there might be other problems that we are oblivious to.

In fact, we are aware of one such problem that has long been
overlooked by the community: How much do we really know
about recommendation datasets? To answer this question, we
perform various analyses and experiments in this work to improve
our understanding of the datasets used for evaluating top-K item
recommendation in a systematic and comprehensive manner. Specif-
ically, we adopt the following three steps: (1) First, we examined
the proceedings of 5 top-tier conferences for the past 5 years, and
narrowed it down to 48 papers which address the problem of top-K
item recommendation based on implicit feedback. There are a total
of 45 publicly available datasets which have been used in one or
more of these papers, and we performed various analyses to illus-
trate how different datasets have been utilised in recent papers. (2)
After which, we introduce a set of data characteristics which can
be used as a representation for each of these datasets, and at the
same time, are easily obtained by analysing the (binary) user-item
interaction matrix. We leveraged these characteristics to clearly
understandwhat are the similarities as well as differences between
various datasets. (3) Finally, we performed an empirical study using
a variety of recommendation algorithms to find out if the choice of
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datasets used for evaluating item recommendation could influence
the observations and/or conclusions obtained.

In summary, this paper conducts a retrospective survey on the
datasets used for top-K recommendation and seeks to shed light
on whether the current practice of selecting datasets arbitrarily
would lead to unintended (and perhaps, negative) consequences. To
the best of our knowledge, we are the first to provide an extensive
overview 1 of recommendation datasets, which is a fundamental
but often neglected aspect of the evaluation procedure.

2 COLLECTION AND ANALYSIS
2.1 Paper and Dataset Collection
We start by examining the proceedings of 5 top-tier conferences
(KDD, SIGIR, TheWebConf, WSDM, and RecSys) for the past 5
years (2016 to 2020), and gathering a list of long papers focusing
on implicit feedback based top-K recommendation. Concretely, we
performed a keyword search to narrow down to around 400 papers
with titles containing either ‘recommend’ or ‘collaborative’. Next,
we manually filtered these papers to include only those which (1)
focuses on implicit feedback top-K recommendation, (2) evaluates
using classification and/or rankingmetrics, such as Precision, Recall,
and Normalized Discounted Cumulative Gain (nDCG), and most
importantly, (3) utilises at least one publicly available dataset.In
other words, we do not include papers which either (1) formulate it
as a rating prediction problem, or (2) tackle other recommendation
tasks, e.g. content-aware or session-based recommendation. As
summarised in Table 1, we managed to obtain a total of 48 long
papers which satisfy the aforementioned requirements. Collectively,
there are 45 publicly available datasets 2which have been used in
one or more of these papers. The strict requirements imposed for
collecting & filtering the datasets lead to a useful property for
analysing the usage patterns: A dataset used in any single one of
these papers can be used in every other paper as well. Put simply, there
is no reason for a dataset to be inapplicable for any of these papers.

2.2 Dataset Usage Analysis
Figure 1 illustrates the usage patterns of the 45 datasets across all
48 papers using a scatter plot. There are 11 datasets (24.45%) used
in 5 or more papers, 10 datasets (22.22%) utilised in 2 to 4 papers,
and 24 datasets (53.33%) which have been used in just 1 paper.
Unsurprisingly, a handful of these datasets happen to be really pop-
ular, e.g. Netflix, MovieLens-1M (ML-1M), Yelp, and MovieLens-20M
(ML-20M). However, we can also observe that the majority of these
datasets are underutilised.

As for how different datasets have been used in recent papers, we
note that there is little to no regularity. On one end, we have papers
like [49] and [51] performing their evaluation on 10 datasets and 9
datasets, respectively. On the other end, an overwhelming majority
of these papers, i.e. 36 (or 75%) of them, utilised at most 3 publicly
available datasets. Furthermore, we use the Apriori algorithm [2]

1 Source code and detailed information regarding the datasets used in this paper can
be found at https://github.com/almightyGOSU/TheDatasetsDilemma.
2 Different versions of a dataset are counted only once. For instance, Yelp (https:
//www.yelp.com/dataset) releases a different version of the dataset for each iteration
of its dataset challenge.

to determine the combinations of datasets which have been used to-
gether in 2 or more papers. Table 2 presents the dataset quadruplets
and triplets which are commonly used together. First, we have [32]
and [33] with 4 datasets in common. However, it should be noted
that both papers are written by the same author. Next, there are 7
different dataset triplets which appear in 2 or more papers. Notably,
the triplet {ML-20M, Million Song Dataset, and Netflix } has been
used together by 5 different papers. In addition, [49] and [51] ended
up having just 3 datasets, i.e. {ML-1M,ML-20M, andMeetup (NYC) },
in common despite the substantial number of datasets used for eval-
uation. Finally, while not shown in Table 2, there are also 21 distinct
pairs of datasets which have been used in multiple papers. Amongst
them, the most frequent pairing would be {ML-20M, Netflix }, which
has been evaluated at the same time in 9 separate papers.

Overall, although all the aforementioned papers address the ex-
act same problem of implicit feedback based top-K recommendation,
our analyses have demonstrated that the choice of datasets is often
determined arbitrarily. Even when two papers have been evaluated
on the same dataset(s), the results might not be comparable due to
different data pre-processing and/or splitting strategies [48].

3 DATASETS AND THEIR CHARACTERISTICS
Intuitively, we should rely on a diverse collection of datasets, i.e. in
terms of quantifiable dataset characteristics such as size and density,
in order to validate the robustness of any proposed method. There-
fore, as described next in Section 3.1, we propose using a more
complete set of dataset characteristics as the representation for
each dataset. These characteristics are then leveraged in Section 3.2
to illustrate the similarities and differences of different datasets.

3.1 Dataset Characteristics
Even after decades of research, we still lack a thorough understand-
ing of the characteristics of different recommendation datasets.
In [1], the authors used an exploratory modelling (EM) approach
to investigate the impact of different dataset characteristics on
the performance of various recommendation algorithms for the
rating prediction task. More recently, [10] adopted an identical ap-
proach in order to assess the robustness of several recommender
algorithms against shilling attacks, using the same characteristics
as [1]. Inspired by [1] and [10], we consider two different types of
data characteristics which can be easily derived from the user-item
interaction matrix in the implicit feedback setting.

3.1.1 Structural Characteristics. First, we introduce 3 data charac-
teristics which are based on the structure of the interaction matrix,
namely 𝑆𝑝𝑎𝑐𝑒𝑙𝑜𝑔 , 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 , and 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔 . For any dataset, we
have the set of usersU, the set of items I, and the set of interac-
tions K . Structural data characteristics can be easily obtained by
building upon basic statistics such as the number of users |U|, the
number of items |I |, and the number of interactions |K |.

Definition 1 (𝑆𝑝𝑎𝑐𝑒𝑙𝑜𝑔). For any given dataset, 𝑆𝑝𝑎𝑐𝑒𝑙𝑜𝑔 is defined
as follows:

𝑆𝑝𝑎𝑐𝑒𝑙𝑜𝑔 = 𝑙𝑜𝑔10 (
|U| x |I |

𝑠𝑐
) (1)

whereby 𝑠𝑐 is a scaling factor to constrain the possible values of
|U| x |I |. Following [1], the value of 𝑠𝑐 is set as 1,000.
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Table 1: Recent papers for implicit feedback based top-K recommendation

Conference Year Total2016 2017 2018 2019 2020

KDD - - [5, 8] [6] [21, 23, 35, 36, 46] 8
RecSys [7, 34, 41] [39] [59] [12, 33, 37] - 8
SIGIR [18, 57] [3] [11, 16] [30, 52, 54] [4, 13, 15, 44, 47, 53] 14
WSDM [55, 56] - - [38] [31, 43, 45, 51, 58] 8

TheWebConf [28] [17] [26, 29, 49] [50] [22, 24, 27, 32] 10

Total 8 3 8 9 20 48

Figure 1: Dataset Usage Patterns (Best viewed in colour)

Table 2: Combinations of datasets used in 2 or more papers

Datasets Papers

Epinions, ML-20M, Netflix, Yelp [32, 33]

ML-20M, Million Song Dataset, Netflix [12, 24, 29, 43, 45]
Amazon (Books), Gowalla, Yelp [15, 52, 53]

Amazon (CDs & Vinyl; Electronics), Gowalla [35, 47]
Flixster, ML-10M, Netflix [7, 8]
ML-100K, ML-1M, Netflix [26, 50]
ML-10M, Netflix, Yelp [55, 56]

ML-1M, ML-20M, Meetup (NYC) [49, 51]

Definition 2 (𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔). For any given dataset, 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 can be
derived as follows:

𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 = 𝑙𝑜𝑔10 (
|U|
|I| ) (2)

Definition 3 (𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔). For any given dataset, we can calculate
its 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔 as follows:

𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔 = 𝑙𝑜𝑔10 (
|K |

|U| x |I | ) (3)

The number of users |U| and the number of items |I | can fall
within a wide spread of values, ranging from hundreds to even
millions of users/items. Similarly, the number of interactions |K |
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can be as little as ∼35𝐾 (FilmTrust), or as much as ∼100𝑀 (Netflix).
Therefore, all structural characteristics are log transformed in order
to normalise its distributions and enable meaningful comparisons
between datasets with significantly different statistics.

Intuitively, 𝑆𝑝𝑎𝑐𝑒𝑙𝑜𝑔 reflects the size (and even the scale) of the
user-item interaction space, 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 measures the ratio of users
to items, and 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔 represents the proportion of observed in-
teractions among all the possible user-item interactions. Structural
characteristics are easily interpretable and closely related to one
another. For 2 datasets with similar 𝑆𝑝𝑎𝑐𝑒𝑙𝑜𝑔 and 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔 , the
dataset with a considerably larger 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 would have more users
and fewer items, and consequently, less observed interactions per
user and more observed interactions per item.

3.1.2 Distributional Characteristics. Here, we describe 2 data char-
acteristics, i.e. 𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 and 𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚 , which captures how the in-
teractions are distributed across both the users and the items.

Definition 4 (𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 ). For any given dataset,𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 is defined
as follows:

𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 = 1 − 2
|U |∑
𝑢 = 1

( |U| + 1 − 𝑢
|U| + 1

) x ( |K𝑢 ||K | ) (4)

where |K𝑢 | is the number of interactions belonging to the user 𝑢.

Definition 5 (𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚). For any given dataset, 𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚 can be
derived as follows:

𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚 = 1 − 2
|I |∑
𝑖 = 1

( |I| + 1 − 𝑖
|I | + 1

) x ( |K𝑖 ||K | ) (5)

with |K𝑖 | being the number of interactions belonging to the item 𝑖 .

𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 and𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚 utilise the Gini coefficient [14] to measure
the distribution of interactions over the set of users U and the set
of items I, respectively. Since these 2 characteristics are similar
in nature, we will describe them by using 𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚 as an example.
𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚 takes on values between 0 to 1 (both inclusive), and a
value of 0 implies total equality (i.e. all items are equally popular
and have the same number of observed interactions), while a value
of 1 indicates maximal inequality whereby all observed interactions
belong to a single item. In reality, skewed frequency distributions
are rather common across many application scenarios. For example,
a blockbuster movie can attract much more viewers as compared
to a niche movie with a relatively smaller target audience.

Unlike structural characteristics, distributional characteristics
are rarely considered and/or discussed about in most recommen-
dation papers. In practice, there are often multiple measures that
can be used for characterising the frequency distributions of the
user-item interaction data. Having said that, it was found in [1]
that most of these metrics are highly correlated with one another.
Therefore, we only consider 𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 and 𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚 in this paper.

3.1.3 Influence of Dataset Characteristics. Structural and distri-
butional characteristics are capable of capturing the intricate re-
lationships between users, items, and interactions in a cohesive
manner. Notably, their importance should not be underestimated
as these data characteristics can affect most recommendation algo-
rithms in one way or another. For example, it is commonly assumed
that datasets with higher density would lead to better performance

across recommendation algorithms in general as there would be
more interactions observed for each user/item under considera-
tion. Similarly, for a dataset with a high 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 (i.e. more users
than items) and 𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 (i.e. there exists some users with many
observed interactions), there is a smaller set of candidate items,
and at the same time, there would be a handful of active users who
have interacted with many of these items. For such datasets, recom-
mender systems adopting a user-based approach such as UserKNN
might perform better as (1) having more candidate users increase
the likelihood of potentially finding similar users, and (2) it would
be easier to find a similar user among these active users with high
item coverage. In some way, it is reasonable to expect these dataset
characteristics to influence the performance of commonly used
algorithms as most of them are still based on the age-old concept
of Collaborative Filtering (CF) [20], i.e. identifying similar pairs of
items and/or like-minded users. Therefore, we believe that it would
be both important and beneficial to have an understanding of rec-
ommendation datasets from the perspective of data characteristics.

3.2 Similarities and Differences
To the best of our knowledge, there is no existingworkwhich strives
to set apart individual recommendation datasets based on their
(measurable) similarities or differences. We begin by considering
the 45 datasets shown in Figure 1 (Section 2). 3 of these datasets 3 are
excluded as they are too small and sparse for any meaningful com-
parison. Furthermore, we also include the remaining 9 Amazon
datasets 4 which have not been utilised in any of the recent papers
for top-K recommendation. This leaves us with a total of 51 datasets.

In practice, datasets used for evaluating recommender systems
are rarely used as they are. Therefore, we preprocess these datasets
before deriving their data characteristics. Most, if not all, research
papers would remove the cold-start users/items (i.e. users/items
with too few interactions) as there is insufficient information for rec-
ommendation systems to provide inference for these extremely inac-
tive users or highly unpopular items.Wewould like to point out that
some of these datasets are made publicly available in a (partially)
preprocessed form. For instance, the classic MovieLens datasets
(i.e. ML-100K, ML-1M, ML-10M, and ML-20M) do not include users
with less than 20 interactions. As for datasets with explicit feedback
(e.g. ratings), we simply follow the commonly used approach (e.g.
in [7, 37, 39, 59]) of converting all the observed entries into positive
interactions to make them suitable for the implicit feedback setting.

3.2.1 Clustering Datasets based on their Characteristics. By using
the 5 data characteristics described in Section 3.1, we can visualize
the similarities and differences between various datasets based on
their pairwise Euclidean distance. However, in order to obtain a
better overview of recommendation datasets, we first cluster these
datasets before taking a closer look at the characteristics of each
cluster. Naturally, datasets in the same cluster are more similar
to one another, and at the same time, considerably different from

3 The 3 datasets that are excluded are { HetRec2011-Delicious-2K; Twitter (USA); Twit-
ter (WW) }. These datasets have between ∼35𝐾 to ∼105𝐾 interactions and between
∼36𝐾 to ∼69𝐾 items, and are too small and sparse for meaningful analysis after the
data preprocessing step.
4 The remaining 9 Amazon datasets are { Apps for Android; Baby; Digital Music; Health
& Personal Care; Home & Kitchen; Musical Instruments; Office Products; Patio, Lawn
& Garden; Tools & Home Improvement }.
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the datasets in other clusters. Each dataset is represented by a
5-dimensional vector, i.e. [𝑆𝑝𝑎𝑐𝑒𝑙𝑜𝑔, 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔, 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔,𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 ,
𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚], and we use k-means (i.e. based on Euclidean distance)
to cluster these 51 datasets. Empirically, we set the number of
clusters 5 to 5. Table 3 lists the datasets in each cluster, while Table 4
presents the characteristics of each cluster (i.e. the cluster centroid).

Cluster 1 consists of gigantic but sparse datasets with the most
users and items, e.g. Last.fm 360K which has ∼359𝐾 users, ∼88𝐾
items, and ∼17𝑀 interactions. As forCluster 2, it contains datasets
with much fewer interactions (≤ 1𝑀 interactions) and the number
of users and items are often just in the thousands. Unlike other clus-
ters, there are several datasets here with significantly more items
than users (hence the negative 𝑠ℎ𝑎𝑝𝑒𝑙𝑜𝑔). For instance, CiteULike-t
has ∼4𝐾 users, ∼7𝐾 items, and ∼82𝐾 interactions. The datasets in
Cluster 3 have a moderate number of users, items, and interactions,
and are relatively sparse as compared to datasets in other clusters.
Next, we have Cluster 4 with just 4 datasets. This is an interesting
cluster as the datasets here have the least number of users, items,
and interactions, as well as the highest densities. The frequently
used ML-100K dataset, which has 943 users, 1, 349 items, and 99, 287
interactions, turns out to be the dataset with the most interactions
within this cluster. Finally, Cluster 5 contains datasets with a con-
siderable amount of users and items (much lesser than Cluster 1,
but slightly more than Cluster 3) and the datasets are quite dense
as well. Notably, the datasets in this cluster have a lot more users
than items. For example, ML-20M has roughly 7 times more users
than items with ∼138𝐾 users and ∼18𝐾 items. In addition, many
frequently used datasets such as ML-10M, ML-20M, Netflix, and
Pinterest belong to Cluster 5. Last but not least, we can observe
that the interactions are usually more evenly distributed across
users than items across all clusters. The most popular items can
easily amass thousands or even millions of interactions, but it is
rather unlikely even for an extremely active user to have that many
interactions. By leveraging the various characteristics and focusing
solely on the datasets themselves, we are able to put forward a
thorough analysis, and consequently, improve our perception of
different recommendation datasets substantially.

4 EXPERIMENTS AND RESULTS
Up to this point, we have seen how the choice of datasets is often de-
termined arbitrarily (Section 2) as well as how various datasets can
be distinctively different from one another (Section 3). Nonetheless,
a key question still remains: Could it actually affect the observa-
tions and/or conclusions obtained if we select the datasets in a
different manner? For instance, would we obtain similar results
across different recommendation algorithms if we utilise datasets
with similar characteristics? In this section, we conduct an empir-
ical study to investigate the performance of several well known
recommendation algorithms using a wide variety of datasets with
different characteristics.

4.1 Experimental Setup
First, it is impractical to evaluate and analyse the performance of
multiple recommendation algorithms on all 51 datasets. Therefore,

5 For the clustering, we considered internal validation measures such as Silhouette
Coefficient and Davies-Bouldin Score, and the optimal number of clusters is 4 or 5.

for each cluster, we select the 3 datasets which are closest to the
corresponding cluster centroid based on their Euclidean distances.
These selected datasets would have data characteristics which are
highly representative of their own cluster, and at the same time,
be significantly different from datasets in other clusters. Overall,
as shown in Table 5, we conduct the experiments on a total of 15
datasets (5 clusters x 3 datasets).

Next, for each dataset, we adopt the widely used leave-one-out
approach [16, 17, 23, 49, 50] to construct the training, validation,
and testing sets. For each user, the latest interaction is used for
testing, the penultimate interaction is used for validation, and all
her remaining interactions are used for training. As for datasets
without timestamps, the validation and testing interactions for each
user are sampled randomly.

For all 15 datasets, we evaluate the performance of 5 different
recommendation algorithms as follows:

(1) UserKNN: UserKNN [19] is a classic user neighbourhood-
based CF approach using the Cosine Similarity to find like-
minded users. Following [9], both the neighbourhood size
and shrinkage term are selected from [5, 1000].

(2) ItemKNN: ItemKNN [42] is an item neighbourhood-based
variant of UserKNN. Similarly, we use the Cosine Similarity,
and both the neighbourhood size and shrinkage term are
selected from [5, 1000].

(3) RP3beta: RP3beta [40] is a simple yet effective graph-based
method which performs a random walk between users and
items based on the observed interaction matrix. The simi-
larity between two items is further divided by each item’s
popularity raised to the power of a coefficient 𝛽 . The number
of neighbours is set between [5, 1000], and both the damping
factor 𝛼 and the coefficient 𝛽 are set to real values between
[0, 2].

(4) WMF: Weighted Matrix Factorization (WMF) [20] uses a
latent factor model approach designed specifically for the im-
plicit feedback setting. The weight for unobserved entries is
set to 1, while the weight for observed entries (i.e. confidence)
is chosen from [2, 100]. The number of latent factors is set
between [100, 200], and WMF is trained using Alternating
Least Squares (ALS).

(5) Mult-VAE: Mult-VAE [29] is a deep generative model which
has been shown to be a strong deep learning-basedmethod [9].
The autoencoder-based architecture for Mult-VAE with 1
hidden layer (of size 600) is [𝐼 → 600 → 200 → 600 → 𝐼 ],
whereby 𝐼 is the number of items. The hyperparameter 𝛽
(for KL annealing) is selected from {0.1, 0.2, 0.3, 0.5, 1.0}, and
it is optimised by Adam with a learning rate 0.001 for 200
epochs.

The recommendation algorithms are selected for various reasons:
(1) They represent different ‘families’ of recommendation methods
with distinct inductive bias, i.e. neighbourhood-based, graph-based,
latent factor models, and generative models. (2) These straightfor-
ward and yet effective algorithms do not require extensive hyper-
parameter tuning to achieve satisfactory performance. (3) Finally,
if the hyperparameters are selected adequately [9], conceptually
simple methods (e.g. ItemKNN and RP3beta) have been shown
to outperform recently proposed methods such as [11, 17, 59] 6.
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Table 3: Dataset clusters obtained using k-means

Cluster Datasets Size

1 Amazon (Books; CDs & Vinyl; Electronics; Kindle Store; Movies & TV);
GoodReads (Comics); Last.fm 360K; Million Song Dataset; Yahoo! R1; Yahoo! R2; Yelp 11

2 Amazon (Amazon Instant Video; Automotive; Digital Music; Office Products); Amazon Fine Food;
CiteULike-a; CiteULike-t; HetRec2011-LastFM-2K; HetRec2011-ML-2K; Last.fm 1K; ML-1M; Yahoo! R4 12

3
Amazon (Apps for Android; Baby; Beauty; Cell Phones & Accessories; Clothing, Shoes & Jewelry; Grocery & Gourmet
Food; Health & Personal Care; Home & Kitchen; Pet Supplies; Sports & Outdoors; Tools & Home Improvement; Toys

& Games; Video Games); BookCrossing; Epinions; Gowalla; Meetup (NYC)
17

4 Amazon (Musical Instruments; Patio, Lawn & Garden); FilmTrust; ML-100K 4

5 Flixster; Goodbooks-10K; ML-10M; ML-20M; Million Song Dataset (Taste Profile Subset); Netflix; Pinterest 7

Table 4: Characteristics (i.e. cluster centroid) of all dataset
clusters. For individual data characteristic, we rank the clus-
ters based on their corresponding values in descending or-
der.

Cluster 𝑆𝑝𝑎𝑐𝑒𝑙𝑜𝑔 𝑆ℎ𝑎𝑝𝑒𝑙𝑜𝑔 𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑜𝑔 𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚

1 7.274 (1) 0.497 (2) -3.412 (5) 0.477 (2) 0.657 (2)
2 4.340 (4) -0.134 (5) -2.162 (3) 0.441 (3) 0.517 (4)
3 5.619 (3) 0.272 (3) -3.106 (4) 0.337 (4) 0.504 (5)
4 3.167 (5) 0.116 (4) -1.670 (1) 0.289 (5) 0.557 (3)
5 6.307 (2) 0.878 (1) -2.120 (2) 0.502 (1) 0.767 (1)

Table 5: Representative datasets for each dataset cluster

Cluster Representative Datasets

1 Amazon (Electronics; Movies & TV); Last.fm 360K

2 Amazon (Digital Music); CiteULike-t; Yahoo! R4

3 Amazon (Beauty; Toys & Games; Video Games)

4 Amazon (Musical Instruments; Patio, Lawn & Garden); ML-100K

5 Flixster; ML-10M; ML-20M

Nevertheless, we intend to include other advanced algorithms, e.g.
HyperML [51] and LightGCN [15], as part of our future work.

The evaluation is performed using both classification and rank-
ing based metrics, i.e. Recall@K and nDCG@K, respectively. Re-
call@K measures whether the ground truth item is present in the
top-K recommendation list. Since we are using the leave-one-out
approach, Recall@K is equivalent to the Hit Ratio (HR) [17]. Other
than that, we also consider the Normalized Discounted Cumula-
tive Gain @ K (nDCG@K) which accounts for the position of the
ground truth item within the top-K recommendation list. As sug-
gested by [25], we use the exact version of these metrics (i.e. we rank
the ground truth item among all candidate items), and the number
of recommended items, i.e. K, is set to 10. Additionally, to determine
6 In addition to the 5 algorithms reported in this paper, we experimented with sev-
eral representative neural network-based methods, i.e. CMN [11], NCF [17], and
LRML [49]. However, in line with the findings from [9], these methods performed
poorly across all datasets despite extensive hyperparameter tuning. Furthermore, the
time complexity of CMN [11] renders it computationally prohibitive for the larger
datasets in Clusters 1 and 5. As such, we omit their results from the paper.

the ideal hyperparameters for all recommendation algorithms on
each dataset, we adopt a Bayesian search strategy 7 based on the
nDCG@10 of the corresponding validation set. For each algorithm,
we record its Recall@10 and nDCG@10 obtained on the testing set
when the corresponding validation nDCG@10 is the highest.

4.2 Experimental Results
Figures 2 and 3 present the Recall@10 and the nDCG@10 of differ-
ent recommendation algorithms for the 15 datasets, respectively. As
the results (i.e. relative performance of different algorithms for each
dataset) are nearly identical, we will focus on nDCG@10. Unless
stated otherwise, the observations do hold in terms of Recall@10.

For Cluster 1, in most cases, RP3beta tends to perform well
while WMF performs poorly 8. While the results for Amazon (Elec-
tronics) and Amazon (Movies & TV) are rather similar, we can see
that UserKNN and Mult-VAE does surprisingly well for the Last.fm
360K dataset. The Last.fm 360K dataset is structurally similar to
those in Cluster 5, i.e. with a large number of interactions as well as
much more users than items, and this could have contributed to the
stronger performance of UserKNN and Mult-VAE. As for Cluster
2, the graph-based RP3beta is always the best performing method.
On the Yahoo! R4 dataset, RP3beta and UserKNN performs similarly
(i.e. the difference is not statistically significant). When it comes
to Cluster 3, there are a number of interesting observations. First,
across all 3 datasets, RP3beta has the best performance while Mult-
VAE has the worst performance. Next, both UserKNN and ItemKNN
perform significantly worse (with a 3% to 8% relative difference)
than RP3beta. At the same time, both UserKNN and ItemKNN per-
form significantly better (with a 3% to 15% relative difference) than
WMF. Finally, WMF performs much better (with a 16% to 27% rel-
ative difference) than Mult-VAE. Note that for all 3 datasets, the
difference between UserKNN and ItemKNN is never statistically sig-
nificant. For Cluster 4, the relative performance of each algorithm

7 Specifically, we use a wrapper function from https://scikit-optimize.github.io, and for
each algorithm (except Mult-VAE whereby Bayesian search is not required), we execute
a total of 35 runs whereby the first 5 runs are random initial points. The Bayesian
search strategy facilitates efficient hyperparameter tuning for all recommendation
algorithms and reduces the likelihood of subpar performance due to poorly chosen
hyperparameters.
8 Whenever we state that method A performs better (or worse) than method B, the
difference between those two methods is statistically significant with p-value < 0.05
using the paired sample t-test.

Research Paper  WSDM ’22, Feb. 21–25, 2022, Virtual Event, Tempe, AZ, USA

146

https://scikit-optimize.github.io


Figure 2: Recall@10 of different recommendation algorithms for the 15 datasets (Best viewed in colour)

Figure 3: nDCG@10 of different recommendation algorithms for the 15 datasets (Best viewed in colour)

changes drastically across different datasets. In other words, for this
particular cluster, we do not have any algorithm which consistently
performs better or worse than all the other algorithms. Finally, for
Cluster 5, we can immediately see the results are drastically differ-
ent from that of Cluster 3. Across all 3 datasets in Cluster 5, Mult-
VAE, UserKNN, and WMF perform incredibly well and hold a 20%
relative improvement over ItemKNN and RP3beta. This is in stark
contrast with the results of Cluster 3, whereby RP3beta triumphs
over remaining algorithms while Mult-VAE consistently ranks last.

Our results highlight a clear and consistent trend: For datasets
with relatively similar characteristics, there could be a particular
recommendation algorithm which tends to perform significantly
better (or worse) than all remaining algorithms. As a matter of fact,

it seems entirely plausible that a very different ‘ordering’ of recom-
mendation algorithms 9 can be obtained just by selecting datasets
from different clusters (e.g. Cluster 3 vs. Cluster 5). Consequently, it
could lead to completely different observations and/or conclusions.

4.2.1 Relating the Recommendation Performance for each Cluster
to its Data Characteristics. In order to have a better understanding
of the results, we provide a few examples relating the performance
of various recommender algorithms to the data characteristics of
a particular dataset cluster.

9 The ‘ordering’ for Cluster 3 would be RP3beta > UserKNN, ItemKNN > WMF > Mult-
VAE, while the ‘ordering’ forCluster 5would beMult-VAE, UserKNN, WMF > ItemKNN,
RP3beta.
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As mentioned in Section 3.2.1, the datasets in Cluster 3 have
very moderate characteristics in terms of the number of users, items,
and interactions. At the same time, the relatively low 𝐺𝑖𝑛𝑖𝑢𝑠𝑒𝑟 and
𝐺𝑖𝑛𝑖𝑖𝑡𝑒𝑚 scores imply that the observed interactions are muchmore
equally distributed across both users and items. For these datasets,
their corresponding user-item bipartite graphs would have much
higher connectivity, and it would be less likely to encounter mul-
tiple disconnected vertices (either users or items) when performing
the random walks. We hypothesise that it could be the one of the
reasons behind the exceptionally strong performance of the graph-
based algorithm RP3beta for this particular cluster. Additionally,
since we have a similar number of users and items in these datasets,
both neighbourhood-based approaches, i.e. the user-based UserKNN
and the item-oriented ItemKNN, have nearly identical performance.

Next, for Cluster 4, we have noted that the performance of
different algorithms appears to be relatively unstable across the
individual datasets. We believe that this could be attributed to the
extremely small dataset sizes as the largest dataset in this cluster, i.e.
ML-100K, has just ∼100𝐾 interactions as its name implies. As such,
it is unlikely for any particular method to learn well enough from
the training data, which then leads to unreliable and seemingly
random predictions.

Finally, for Cluster 5, the user neighbourhood-based UserKNN
performs incredibly well as it could be easier to find like-minded
users among the large number of candidate users in these datasets
with an exceptionally high 𝑠ℎ𝑎𝑝𝑒𝑙𝑜𝑔 (i.e. much more users than
items). If we keep the number of interactions (and hence, density)
fixed and simply adjust the ratio of users to items, the feasibility
of deriving either the user-user similarity matrix or the item-item
similarity matrix would naturally be affected [1].

To summarise, as different recommendation algorithms have
distinct inductive bias, i.e. neighbourhood-based, graph-based, latent
factor models, or generative models, the data characteristics would in-
herently affect them differently. As such, it would be fair to assume
that othermethods, e.g. HyperML [51] and LightGCN [15], would be
just as susceptible to the changes in the characteristics of a dataset.

4.3 Suggestion
Our findings have shown that the approach used for selecting
datasets could in fact influence the observations and/or conclu-
sions obtained from the experimental evaluation. As researchers
may face different constraints (e.g. limited to datasets from a spe-
cific domain) when performing their experiments, we believe that
restricting everyone to a common set of benchmark datasets may
not be the ideal solution. Instead, given the large variety of pub-
licly available datasets to choose from, we strongly suggest using
datasets with considerably different characteristics as part of the
evaluation process. For example, as shown in Section 2.2, frequent
dataset combinations such as {ML-10M, Netflix } and {ML-20M, Net-
flix } are all made up of large and dense datasets from Cluster 5.
Therefore, the results could be biased, and the same model might
not work well for other scenarios.

5 RELATEDWORK
Experimental Issues in Recommender Systems. Lately, sev-
eral papers have pointed out critical experimental issues related

to recommender systems. For example, [9] has shown that many
recently proposed methods (which are often based on deep learn-
ing) are in fact not reproducible and often fail to outperform sim-
ple, but fine-tuned, baseline methods such as ItemKNN [42] and
RP3beta [40]. [25] has shown that sampled metrics, i.e. ranking the
relevant items together with a smaller set of random items in or-
der to speed up the computation of metrics, leads to an inaccurate
evaluation and should be avoided. [48] takes a broader view of the
entire evaluation process and analyses the influence of different
factors, e.g. utilised datasets, evaluation metrics, hyperparameter
tuning strategies, etc., on the recommendation performance. How-
ever, the experiments in [48] are performed on 6 ‘popular’ datasets
and evaluated using sampled metrics, and hence the observations
might not be completely accurate.
DataCharacteristics of RecommendationDatasets Although
we make use of similar data characteristics as [1] and [10], there
are several notable differences: (1) We focus on the task of im-
plicit feedback based top-K recommendation, while [1] and [10]
consider rating prediction and robustness against shilling attacks,
respectively, using explicit feedback. (2) We adopt a dataset-centric
approach and conduct our empirical study on 15 distinctly different
datasets, while both papers utilise 4 arbitrarily chosen datasets. (3)
Most importantly, we evaluate various recommendation algorithms
on the ‘complete’ datasets, i.e. just as it would be used in any other
empirical study. On the other hand, these 2 papers use a random
sampling approach to extract multiple submatrices from the original
user-item interaction matrix. The data characteristics and recom-
mendation performance are then derived from these submatrices
in order to fit a linear regression model as part of their Exploratory
Modelling (EM) approach. However, the characteristics as well as
performance obtained via the submatrices could in reality end up
being very different from that of the actual interaction matrix.

6 CONCLUSION
In this paper, we conducted a retrospective survey on datasets used
for implicit feedback based top-K recommendation. We demon-
strated how various datasets have been utilised rather arbitrarily
in recent papers, and illustrated the similarities and differences be-
tween many widely known datasets using a set of well-defined data
characteristics. Additionally, we investigated whether the datasets
used, with respect to their data characteristics, could in fact lead to
different observations and/or conclusions drawn from an empirical
study. Our findings have shown that data characteristics do have a
significant impact on the obtained results, and we strongly suggest
using datasets with considerably different characteristics to improve
the robustness of the evaluation process. As part of our future work,
we would like to consider more recommendation algorithms as part
of the empirical study, as well as other recommendation tasks, e.g.
content-aware or session-based recommendation.
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