
Context-aware Deep Model for Joint Mobility and Time
Prediction

Yile Chen
Nanyang Technological University

Singapore
yile001@e.ntu.edu.sg

Cheng Long
Nanyang Technological University

Singapore
c.long@ntu.edu.sg

Gao Cong
Nanyang Technological University

Singapore
gaocong@ntu.edu.sg

Chenliang Li
Wuhan University

China
cllee@whu.edu.cn

ABSTRACT
Mobility prediction, which is to predict where a user will arrive
based on the user’s historical mobility records, has attracted much
attention. We argue that it is more useful to know not only where
but also when a user will arrive next in many scenarios such as tar-
geted advertising and taxi service. In this paper, we propose a novel
context-aware deep model called DeepJMT for jointly performing
mobility prediction (to know where) and time prediction (to know
when). The DeepJMT model consists of (1) a hierarchical recurrent
neural network (RNN) based sequential dependency encoder, which
is more capable of capturing a user’s mobility regularities and tem-
poral patterns compared to vanilla RNN based models; (2) a spatial
context extractor and a periodicity context extractor to extract lo-
cation semantics and the user’s periodicity, respectively; and (3) a
co-attention based social & temporal context extractor which could
extract the mobility and temporal evidence from social relation-
ships. Experiments conducted on three real-world datasets show
that DeepJMT outperforms the state-of-the-art mobility prediction
and time prediction methods.

CCS CONCEPTS
• Information systems → Data mining; Location based ser-
vices; • Human-centered computing → Ubiquitous and mobile
computing design and evaluation methods.

KEYWORDS
mobility prediction; user modeling; location based services; neural
networks

ACM Reference Format:
Yile Chen, Cheng Long, Gao Cong, and Chenliang Li. 2020. Context-aware
Deep Model for Joint Mobility and Time Prediction. In The Thirteenth ACM

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371837

Figure 1: An example of joint mobility and time prediction

International Conference on Web Search and Data Mining (WSDM’20), Feb-
ruary 3–7, 2020, Houston, TX, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3336191.3371837

1 INTRODUCTION
With the prevalence of location-based services, a huge amount
of mobile users’ footprint data is being generated. For example,
location-based social networks (LBSNs) such as Foursquare have
millions of users who check in at points-of-interest (POIs) in their
daily lives. The generated footprint data provides a great oppor-
tunity of understanding human mobility behaviors. For example,
researchers have proposed to leverage a user’s historical records to
predict the user’s next location, i.e., where a user will arrive next.

There are many application scenarios where it is more desirable
to know not only where but also when users will arrive next. The
first example is targeted advertising, where an advertiser could push
POI recommendations (based on predicted location) to mobile users
at appropriate time (based on predicted time). The second example
is taxi service, where a taxi company can route its taxis effectively
to reduce taxi requesters’ waiting time if their travel plans of a
destination and a targeted arrival time could be predicted. The
third example is traffic congestion control, where a transportation
authority could plan earlier if some potential crowd congestion is
predicted based on where and when people would gather. All these
applications require more than what the conventional mobility
prediction task could support.

Motivated by these applications, we propose to predict for a user
where andwhen he/she will arrive next, i.e., we jointly predict users’
mobility and time. One example is shown in Figure 1 for illustra-
tion. While the new task looks promising, there are three technical
challenges. The first one is how to encode the mobility records of a
user. A commonly used strategy is to use recurrent neural network
(RNN) models to learn the latent representation of mobility records.
However, this method suffers from its degraded performance when

https://doi.org/10.1145/3336191.3371837
https://doi.org/10.1145/3336191.3371837

modeling long sequences and cannot distinguish between users’
mobility transitions within a short period (e.g., within a few hours)
and those spanning a longer period (i.e., over several days). The
second challenge is how to incorporate various contexts of mobil-
ity records. For example, existing methods have been proposed to
capture some spatial context but they simply use geographical dis-
tances [9, 13] and are far from being capable of capturing complex
interactions between different locations. Another type of context is
that of periodicity since human mobility often manifests periodic
patterns, such as daily, weekly and monthly routines [7] and it can-
not be well captured by existing matrix factorization based models
such as LRT [10]. The third challenge is that some users only have
a limited number of mobility records, which makes it hard to learn
their mobility regularities and temporal patterns.

To address these challenges, we propose a context-aware deep
model named DeepJMT for joint mobility and time prediction.
Specifically, for the first challenge, we propose to apply a hier-
archical RNN based sequential dependency encoder which is more
capable of dealing with long sequences of mobility records and
also preserving the trajectory semantics. The hierarchical RNN has
two levels, with the lower one for capturing mobility transitions
within a trajectory of short periods and the higher one for modeling
the transitions between two trajectories of long periods. For the
second issue, we propose a spatial context extractor to extract the
semantics of a user’s current location from its spatial neighbors.
In addition, we use a periodicity extractor to automatically select
the highly correlated historical records to derive users’ periodic
patterns without using manually designed features. For the third
challenge, we propose a novel co-attention based social & tempo-
ral context extractor, which extracts two contexts, namely a social
context and a temporal context. The social context models the in-
teractions between a user and his/her friends at different time slots
and is used for augmenting the user’s data for mobility prediction.
The temporal context captures a user’s preference on time slots for
activities based on his/her friends’ preferences and is used for time
prediction. In summary, we make the following contributions:

• We propose a new problem of joint mobility and time pre-
diction, which has applications in many scenarios such as
targeted advertising, taxi service and crowd congestion con-
trol.

• We design a context-aware deep model called DeepJMT
which consists of (1) a hierarchical RNN based sequential
dependency encoder to capture a user’s mobility regularities
and temporal patterns; (2) a spatial context extractor and a
periodicity context extractor which could extract a location’s
semantics and the user’s periodicity, respectively; and (3) a
co-attention based social & temporal context extractor which
could extract the mobility and temporal evidence from social
relationships to alleviate the data sparsity problem.

• We conduct extensive experiments on three real-world datasets
and the experimental results show that our model outper-
forms the existing methods for both mobility prediction and
time prediction tasks. For instance, our DeepJMT model out-
performs the best baseline by 8.2% and 12.1% in terms of
HR@5 and MAP, respectively, on the TKY dataset.

The rest of the paper is organized as follows. In Section 2, we
discuss the related work on mobility prediction and time prediction.
Then we present the problem definition and preliminaries in Sec-
tion 3. In Section 4, we explain the details of the proposed DeepJMT
model. The experimental results are presented in Section 5. Finally,
we conclude the paper in Section 6.

2 RELATEDWORK
2.1 Mobility Prediction
Mobility prediction has attracted much attention partly due to the
prominence of location based services. Different from general POI
recommendation [14, 32] which predicts multiple potential loca-
tions that a user will visit in the future, mobility prediction only
focuses on the next location a user will visit. Some pattern-based
methods [18, 34] are proposed to extract explicit user mobility pat-
terns from historical data with prior knowledge for next location
prediction. However, they cannot capture undefined and compli-
cated mobility regularities in the data. Some model-based methods
[1, 3, 17, 24] are proposed to characterize the mobility patterns
for mobility prediction. Recently, rather than merely modeling se-
quential patterns, many variants have been proposed for exploiting
additional contextual information. Feng et al. [9] propose a metric
embedding learning method to predict the next location, where ge-
ographical and temporal information is incorporated. Feng et al. [8]
propose a method called POI2vec to learn low-dimensional latent
representations of locations by considering both the sequential tran-
sitions and geographical influence and the learned representations
are then used for mobility prediction. Liu et al. [13] propose an RNN
based method called STRNN which incorporates some spatial and
temporal context. Yao et al. [31] use additional textual information
and its semantic vector as auxiliary information for mobility pre-
diction. DeepMove [7] is the state-of-the-art method for mobility
prediction. It uses RNN to embed time and user factors and applies
attention mechanism to capture the periodical effect of mobility.
However, none of these techniques are capable of predicting the
time associated with the next location. In contrast, we propose a
novel framework to achieve joint mobility and time prediction.

2.2 Time Prediction
Temporal point process [2], which models the time of a sequence
of discrete random events (more background could be found in
Section 3.2), is the most popular technique on temporal modeling
for time prediction [5, 26, 27, 29]. Du et al. [5] study the marked
temporal point process which is to predict next event type and time
simultaneously. They propose to use recurrent neural networks for
learning a conditional intensity function which characterizes a tem-
poral point process, but it does not consider relevant signals in the
context of human mobility. Xiao et al. [27] propose to use a kernel
function rather than a conditional intensity function for charac-
terizing a temporal point process. Xiao et al. [26] and Yan et al.
[29] propose to incorporate Generative Adversarial Network (GAN)
with temporal point process with the goal of generating point pro-
cess instances that are as close as authentic temporal distribution.
However, these methods only focus on temporal modelling but are
not concerned about the prediction of event type.

3 PROBLEM FORMULATION AND
PRELIMINARIES

In this section, we define the problem of joint mobility and time pre-
diction. Then we provide some background knowledge of temporal
point process.

3.1 Problem Formulation
Let U = {u1,u2, ...,uM } be a set of users, L = {l1, l2, ..., lN } be a
set of locations with geographical coordinates, and G = (U, E) be
a social relationship graph, where each u ∈ U is a user and e ∈ E

is a social connection.
Given a user u, we denote his/her mobility records by Mu to be

a sequence of spatial-temporal points, i.e.,Mu = {p1,p2, ...,p |Mu |}.
Each pointpi has a location identification li ∈ L and a timestamp ti ,
i.e., pi = (li , ti). Considering that two consecutive spatial-temporal
points with a large time gap in-between do not have strong correla-
tion [31], i.e., the previous point has little influence on the next one,
we split the whole mobility records of a useru into non-overlapping
trajectories Su = {su1 , s

u
2 , ...}, where s

u
i = {pi1,p

i
2, ...p

i
n } is a subse-

quence ofMu with themaximum time gap between two consecutive
points at most σt (e.g., 8 hours).

Problem Statement: Given a user u’s current trajectory suk =
{pk1 ,p

k
2 , ...,p

k
m } and his/her historical trajectories su1 , s

u
2 , ..., s

u
k−1,

the social relationship graph G and the location set L with geo-
graphical coordinates, the problem is to predict the next point pkm+1,
i.e., (lm+1, tm+1).

3.2 Temporal Point Process
Temporal point process is a powerful tool for modeling the time of
a sequence of random events, such as earthquakes and aftershocks
[19] and information diffusion on graph networks [6].

We usually use a conditional intensity function λ(t) to model the
time for the next event given the history of all the previous events,
and it could be expressed as λ(t) = f (t |Htn)

1−F (t |Htn)
, whereHtn denotes

all the previous events (t1, ..., tn−1, tn), f
(
t |Htn

)
is the conditional

density function for time t > tn , and F
(
t |Htn

)
is the corresponding

cumulative distribution function.
If we consider an infinitesimal interval [t, t + dt] in which the

event can happen at most once, we have

λ(t)dt =
f
(
t |Htn

)
dt

1 − F
(
t |Htn

)
=
P
(
tn+1 ∈ [t, t + dt], tn+1 < (tn, t) |Htn

)
P
(
tn+1 < (tn, t) |Htn

)
= P

(
tn+1 ∈ [t, t + dt]|tn+1 < (tn, t) ,Htn

)
= E

[
N ([t, t + dt])|tn+1 < (tn, t) ,Htn

]
(1)

where N ([t, t + dt]) denotes the number of points falling in an
interval [t, t + dt] (note that N ([t, t + dt]) could be either 0 or 1).
It can be shown that the conditional intensity function specifies
the expected number of events happening during a time interval
conditional on the past. Depending on how the conditional inten-
sity function is specified, we get different models of temporal point
process. For example, if we choose λ(t) to be a constant, it corre-
sponds to a homogeneous Poisson process and if we choose λ(t)

Sequential
dependency encoder

Spatial context
extractor

Periodicity context
extractor

Social & Temporal
context extractor

C
oncatenation

Time
predictor

Location
predictor

Spatial
neighbors

Mobility
records

Mobility
records

Social friends
& Time slots

Figure 2: Overview structure of DeepJTM. DeepJMT is com-
posed of a sequential dependency encoder, a spatial context
extractor, a periodicity context extractor, a social & temporal
context extractor and two predictors formobility prediction
and time prediction respectively.

9:00 am 2:30 pm 4:20 pm 11:40 am 3:30 pm 22:50 pm 6:20 am 9:00 am

Embedding layer (location, time, user)

Figure 3: Structure of sequential dependency encoder. We
show the latest three trajectories suk−2, s

u
k−1, and suk of user

u till the current spatial-temporal point pkm .

to be µ + α
∑
ti<t exp (− (t − ti)), where µ and α are parameters, it

becomes the famous Hawkes process. In this paper, we follow [5]
by modeling the conditional intensity function with a recurrent
neural network, which has been shown to be capable of modeling
a general non-linear dependency over historical events.

4 PROPOSED MODEL
In this section, we introduce the details of the proposed DeepJMT
model, namely those of its four components as shown in Figure 2.

4.1 Sequential Dependency Encoder
Sequential dependency encoder, as shown in Figure 3, corresponds
to a hierarchical recurrent neural network (RNN), where GRU units
[4] are used at both the low-level RNN and the high-level RNN.

Consider a trajectory of u suj = {p
j
1,p

j
2, ...,p

j
n } of length n where

p
j
i = (li , ti). We embed user u and his/her spatial-temporal point li
and ti via an embedding layer to vectors eu , eli , and eti and then
feed these vectors as the input to the hierarchical RNN.

The hierarchical RNN involves two levels, namely the low-level
RNN and the high-level RNN. The low-level RNN is for modeling
transitions within a trajectory and the high-level RNN is for model-
ing transitions between trajectories. We feed the location and time
embeddings eli and eti to low-level RNN and obtain the hidden

state
hi = GRUlow (eli ⊕ eti ,hi−1) (2)

where ⊕ means the concatenation operation. The produced hidden
state is regarded as the latent representation about the mobility sta-
tus at this time step. Each spatial-temporal point is sent to low-level
RNN iteratively and the last hidden state of the whole trajectory
suj , i.e., hn , together with the user embedding eu are sent to the
high-level RNN. That is, at the end of each trajectory suj , we obtain
a hidden state

h2j = GRUhiдh (eu ⊕ hn,h
2
j−1) (3)

the hidden state h2j is then fed to be the initial hidden state h0 of
the low-level RNN similarly as Equation 2.

With the hierarchical RNN, users’ long term sequential mobility
patterns are better captured than non-hierarchical RNN structure
for the following reasons. First, user’s mobility records are modeled
in a hierarchical way, where intra-transitions within a trajectories
is modeled in low-level RNN and inter-transitions between two
trajectories is modeled in high-level RNN. Thus the sequence length
is greatly reduced for both two levels compared to non-hierarchical
structure and the model does not suffer from the problem of a de-
graded performance for very long sequences of mobility records.
Second, such hierarchical structure is able to distinguish the bound-
ary of each trajectory with the hierarchical structure, so it preserves
the trajectory information and is more capable of modeling mobility
records.

4.2 Spatial Context Extractor
The spatial context extractor is designed to extract the semantics
about a user’s current location by leveraging its spatial neighbors
(i.e., neighboring locations). The rationale is that a group of loca-
tions, when considered together, could provide some information
about the functionality of the region in which these locations are
located. For illustration, consider an example where there is a user
at a restaurant. In the case that there are some clothing stores, su-
permarkets and a cinema nearby, it is very likely that the user is at a
shopping mall and he/she is doing some shopping or entertainment.
In another case that the locations nearby are mainly residences
and parks, it is very likely that the user is doing some daily routine
such as having a meal and the user’s activity is less likely to be
about shopping or entertainment. Intuitively, such semantics which
infers the activity types would help with more accurate mobility
prediction and we call this kind of semantics as spatial context.

Inspired by the recent advances of graph neural network (GNN)
[11, 23], we model the spatial context of a location l , denoted by cl ,
as the aggregation of all spatial neighbors as below.

cl = дl (
∑

li ∈C(l)

αli eli) (4)

where C(l) = {l1, l2, ..., ln } is the set containing spatial neighbors
of location l , αli is the corresponding weight for li , and дl (·) is a
feed-forward neural network. One simple method to derive the
spatial context is to use mean aggregator for spatial neighbors, i.e.,
αli = 1/|C(l)|. Nevertheless, this method does not take into account
the geographical distances between locations in C(l) and location l

or the dynamic influence between these locations and the user’s
current mobility status.

In this paper, we propose to use both the geographic distances
and the dynamic influence for defining the weights. Specifically,
according to the First Law of Geography, everything is related
to everything else, but near things are more related than distant
things [22]. To incorporate geographical distances properly, we
adopt a Gaussian based kernel to distribute weights among spatial
neighbors. The kernel function is defined as follows:

D(lx , ly) = exp(−
dist(lx , ly)

β
) (5)

where dist() is the distance measure between two locations such
as haversine distance and β is a scaling parameter.

To measure the dynamic influence of different spatial neigh-
bors, we adopt the attention mechanism to calculate the influential
strengths for different spatial neighbors. Specifically, given the la-
tent representation hm of a user’s mobility status, the dynamic
influence is defined using a bilinear operation [16] as follows:

qsli
= h⊤mWleli (6)

whereWl ∈ R
dh×dl are learnable parameters. Note that the mech-

anism used in [23] can also be adopted to derive the influential
strengths. Finally, based on both the geographical distances and
the dynamic influence, we define the weights as follows:

αli =
exp

(
qsli

· D(li , l)
)

∑
lτ ∈C(l) exp

(
qslτ

· D(lτ , l)
) (7)

4.3 Periodicity Context Extractor
According to some existing studies [3, 33], human mobility of-
ten manifests multi-level periodicity, including daily, weekly, and
monthly routines. Since the periodicity phenomenon is reflected
by not only the mobility that is close to the current step but also
that of steps away. Following [7], we use an attention based RNN
to extract periodical patterns from mobility records. Specifically,
for each spatial-temporal point pi = (li , ti) of mobility records in
historical trajectories, we feed the embedded entities of location,
time and user into a GRU denoted by GRUper iod , and then obtain
a sequence of hidden state h′1,h

′
2, ...h

′
k iteratively as follows.

h′i = GRUper iod
(
eli ⊕ eti ⊕ eu ,h

′
i−1

)
(8)

We calculate the correlation scores for previous mobility records
by attention mechanism as in Equation 9. In this case, the records
that are more related would be given higher scores regardless of
how far they are from the current step:

qhh′
i
= h⊤mWдh

′
i (9)

whereWд ∈ Rdh×dд is a transformation matrix. We normalize the
correlation scores and then compute the periodicity context which
we denote by cp as follows.

αh′
i
=

exp
(
qhh′

i

)
∑k
τ=1 exp

(
qhh′

τ

) , cp = k∑
i=1

αh′
i
h′i (10)

S

User Embeddings Time embeddings

Friends weights Time weights

Social context Temporal context

Softmax
So

ftm
ax

Figure 4: Structure of social & time context extractor

Note that we also tried to explicitly extract and store the periodic
patterns by utilizing the existing strategies in [35], but we did not
observe improvement in our preliminary experiments.

4.4 Social & Temporal Context Extractor
Human mobility data usually suffers from a data sparsity problem,
i.e., some users’ mobility records are quite limited [25], and as a
result, it is difficult to capture their mobility regularities and tem-
poral patterns. However, a user usually has similar behaviors and
share similar interests with his/her friends [12, 20]. For example, if
a user’s friends have frequent mobility records at night, the user
would probably be also active at night as a typical characteristic of
temporal patterns. If the user’s friends go to gyms frequently, the
user would probably go to gyms regularly as a typical characteristic
of mobility regularities. Motivated by this, we propose to leverage
the social relationships to extract useful mobility and temporal
evidence to facilitate both mobility and time prediction. Moreover,
since a user may have different degrees of similarity for different
friends during different time slots, e.g., a user has similar behav-
iors as his/her colleagues during workdays and those as his/her
families during non-working days, we propose to use co-attention
mechanism [15, 28] to jointly reason about the co-attention weights
of different user-time pairs. We then make use of these attention
weights to compute both a social context and a temporal context.
The social context captures the aggregated influence on a user from
his/her friends based on their similarity, and the temporal context
captures a user’s preference on time slots based on his/her friends’
preferences. We call this process the social & temporal context
extractor, which is presented in Figure 4.

Given the representation of mobility statehm from the sequential
dependency encoder, a list of user embeddings U ∈ RP×du from
u’s social friends where P denotes the number of u’s friends, and
time embeddings T ∈ RQ×dt , where Q is the number of time slots,
similar to [21], we compute each entry of an affinity weight matrix
S ∈ RP×Q as follows:

Si j = [Wuhm ⊕ Ui]
⊤Ws [Wthm ⊕ Tj] (11)

whereWu ,Wt andWs are parameter matrices, Ui ∈ Rdu is the i-th
row of U and Tj ∈ Rdt is the j-th row of T . The purpose of this
step is to calculate a score which indicates the influence of u ′s i-th
friend during time slot j considering user’s current mobility status.

Then we compute a social context denoted by cu and a temporal
context denoted by ct as follows.

cu = дu (so f tmax(poolrow (S))⊤ ·U) (12)

ct = дt (so f tmax(poolcol (S))
⊤ ·T) (13)

where poolrow (·) and poolcol (·) are pooling functions on rows and
columns, respectively, so f tmax(·) is the softmax function for nor-
malizing the scores, and дu (·) and дt (·) are feed-forward neural
networks. Here we choose to use the max-pooling function to se-
lect the most representative time slot for each friend and the most
representative friend for each time slot.

4.5 Training and Inference
Based on the hidden state hm , the spatial context cl , the periodicity
context cp , and the social context cu , we compute a probability
distribution using a softmax function for mobility prediction as
follows.

P(lm+1 = li |Htm) =
exp

(
W ⊤
i θ lm

)
∑N
τ=1 exp

(
W ⊤
τ θ lm

) (14)

where θ lm = hm ⊕ cl ⊕ cp ⊕ cu is the concatenation of the hidden
state, the spatial context, the periodicity context and the social
context, andWi is the i-th row of projection matrixW . Similar
to [5], we model the conditional intensity function using neural
networks. Specifically, the conditional intensity function is based
on both the hidden state hm and the temporal context ct as follows.

λ(t) = exp
(
v⊤ · θ tm +w · ξm + b

)
(15)

where θ tm = hm ⊕ ct , ξm = t − tm , tm is the timestamp of last
spatial-temporal point and t is the time variable, v andw are model
parameters, and b is the bias term. Based on a conditional inten-
sity function, we can derive the corresponding conditional density
function f (t):

f (t) = λ(t) exp
(
−

∫ t

tm
λ(τ)dτ

)
(16)

By plugging in the conditional intensity function in Equation 16,
we obtain the full expression of the conditional density function as
follows.

f (t) = exp{v⊤ · θ tm +w · ξm + b +
1
w

exp
(
v⊤ · θ tm + b

)
−

1
w

exp
(
v⊤ · θ tm +w · ξm + b

)
}

(17)

We define the loss function as a combination of time prediction
loss and mobility prediction loss. Specifically, we choose to optimize
the negative log-likelihood loss defined by:

L = −
∑

sut ∈Su

|sut |−1∑
m=1

(
log P

(
lm+1 |Htm

)
+ log f (tm+1)

)
(18)

During the training stage, model parameters as well as all the
embeddings could be learned in an end-to-end manner through
back propagation.

In the inference stage, we sort and pick top-K locations with
the highest probabilities as the predicted locations for mobility
prediction, whereK can be chosen according to different application

Table 1: Statistics of three datasets

Dataset #users #locations #trajectories Avg. traj. for a user
NYC 1069 8,358 34,439 32.2
IST 7960 13,844 179,751 22.6
TKY 4662 11,747 156,982 33.7

requirements. For time prediction, the predicted time for the next
location is calculated using the following integration to minimize
the L2 loss.

t̂m+1 = E[t̂m+1 |Htm] =

∫ ∞

0
t · f (t)dt (19)

The integration of the density distribution of the point process
does not have a closed-form solution. We use numerical methods
to approximate the integration.

5 EXPERIMENTS
In this section, we evaluate our DeepJMTmodel on three real-world
datasets. We compare it to several state-of-the-art models, showing
the superiority of our proposed model for both mobility and time
prediction tasks.

5.1 Experimental Settings
5.1.1 Datasets. Our experiments are conducted on three real-world
datasets, which are extracted from the public Foursquare check-in
data [30] from April 2012 to January 2014. Specifically, we select 3
cities where users have a large number of mobility records: New
York City (NYC), Istanbul (IST) and Tokyo (TKY). We filter out those
locations which are visited by fewer than 10 times in each city and
extract the mobility records for each user. We then segment the
mobility records of a user into trajectories such as the the time gap
between two consecutive points within a trajectory is at most 6
hours. We then filter out users with fewer than 5 trajectories. The
statistics of the three processed datasets are summarized in Table 1.

We partition each dataset into training set, validation set and test
set. Specifically, for each user, we use the earliest 70% trajectories
as the training set, the most recent 20% trajectories as the test set
and the remaining 10% trajectories as the validation set.

5.1.2 Evaluation Metrics and Parameter Setting. We use different
metrics for evaluating mobility prediction and time prediction tasks.
For the mobility prediction task, we use Hit Ratio@K (HR@K) and
Mean Average Precision (MAP). HR@K is the percentage that a list
of predictions with length K covers the ground truth location. MAP
is a widely used metric for ranking tasks. Higher values of HR@N
and MAP mean better performance. For the time prediction task,
we use Mean Absolute Error (MAE) which measures the closeness
between the predicted time and the real time. Lower values of MAE
mean better performance.

In the experiments, the embedding sizes of user, time and location
are set to be 100, 50 and 60, respectively and the dimension of the
GRU hidden state is set to be 150. We discretize the number of
time embeddings using 15 minutes long time bins. The model is
optimized by Adam optimizer with a learning rate 0.0005, and the
batch size is set to be 16 for the NYC dataset and 32 for the other
two datasets.

5.1.3 Compared Methods. Since DeepJMT is able to perform mo-
bility and time prediction simultaneously, we compare our model
with three types of baselines. The first type can only perform mo-
bility prediction The second type includes classical temporal point
process models which can only perform time prediction. The third
type of baselines can perform both mobility and time prediction.

Mobility prediction only

• PRME[9]: a metric embedding based method which embeds
users and locations into the same latent space to capture user
preference and sequential transition for mobility prediction.
It only considers the geographical distance and time interval
as the context information.

• GRU[4]: an RNNmodel with GRU unit. We use time, location
and user embeddings as we do for DeepJMT and then send
them to this model as inputs.

• STRNN[13]: an RNN-based model and incorporates spatial
and temporal context into an RNN cell using linear combina-
tion of time-specific and distance-specific transition matrices
as the context information.

• DeepMove[7]: the state-of-the-art model for mobility pre-
diction. It models periodical patterns using attention mech-
anism and uses GRU to encode both recent and historical
trajectories.

Time prediction only

• Hawkes Process: a classical temporal point process with the
conditional intensity function as introduced in Section 3.2.

• Self-correcting (SC) Process: another type of temporal point
process in which the conditional intensity function can be
written as: λ∗(t) = exp

(
µt −

∑
ti<t α

)
with parameters λ

and α .
Mobility and time prediction

• RMTPP[5]: an RNN based model designed for predicting the
time and the type of next event given the types and times-
tamps of previous events. We adapt it for mobility prediction
by regarding each location as an event type.

• IntensityRNN[27] : it is also able to predict the time and the
type of next event. Instead of utilizing the intensity function
as the indicator of time evolution, this model predicts the
time directly and adopt a Gaussian penalty loss function.

• DeepJMT: our proposed method, which utilizes the spatial,
periodicity and social-temporal contexts to perform mobility
and time prediction in a unified way. To verify the effect of
different components, we also conduct experiments on the
degenerated DeepJMT models: (1) Deep-So: the variant of
Deep JMT without the social & temporal context extractor,
(2) DeepJMT-Se: the variant of DeepJMT without the se-
quential dependency encoder, (3) DeepJMT-Sp: the variant
of Deep JMT without the spatial context extractor, and (4)
DeepJMT-Pe: the variant of Deep JMT without the period-
icity context extractor.

5.2 Performance Comparison
We first compare all methods in terms of the mobility and time
prediction effectiveness. For the mobility prediction task, the results
are shown in Table 2 and we have a few observations.

Table 2: Mobility prediction results in terms of HR@N and MAP on three datasets

Methods NYC TKY IST
HR@5 HR@10 HR@20 MAP HR@5 HR@10 HR@20 MAP HR@5 HR@10 HR@20 MAP

PRME 0.2023 0.2696 0.3140 0.0679 0.2210 0.2738 0.3312 0.0411 0.0789 0.1325 0.1968 0.0121
GRU 0.2927 0.3416 0.3834 0.1242 0.2747 0.3433 0.4142 0.0879 0.1524 0.2108 0.2778 0.0581
STRNN 0.2771 0.3365 0.3789 0.1183 0.2808 0.3428 0.4085 0.0744 0.1481 0.2168 0.2766 0.0551
DeepMove 0.3847 0.4605 0.5271 0.1483 0.3642 0.4481 0.5379 0.1106 0.2386 0.3077 0.3726 0.0832
RMTPP 0.3532 0.4253 0.4871 0.1424 0.3452 0.4191 0.4869 0.1067 0.1829 0.2385 0.3028 0.0696
IntensityRNN 0.3552 0.4244 0.4832 0.1419 0.3412 0.4117 0.4789 0.1047 0.1740 0.2269 0.2900 0.0657
DeepJMT-So 0.4093 0.4882 0.5496 0.1595 0.4027 0.4843 0.5597 0.1224 0.2498 0.3184 0.3959 0.0913
DeepJMT-Se 0.3891 0.4418 0.5059 0.1375 0.3821 0.4677 0.5366 0.1103 0.2343 0.3010 0.3706 0.0764
DeepJMT-Sp 0.4021 0.4806 0.5381 0.1540 0.3843 0.4601 0.5306 0.1142 0.2345 0.3008 0.3678 0.0874
DeepJMT-Pe 0.4066 0.4853 0.5420 0.1602 0.4012 0.4838 0.5588 0.1220 0.2504 0.3201 0.3968 0.0903
DeepJMT 0.4122 0.4924 0.5536 0.1623 0.4050 0.4876 0.5622 0.1240 0.2541 0.3226 0.3997 0.0928

First, among the baseline models, PRME has the worst perfor-
mance as it is a metric embedding method and less capable of
modeling complex interactions between the spatial-temporal con-
text and mobility records compared to the other neural network
based methods.

Second, for all neural network based methods, RMTPP and In-
tensityRNN obtain much better results than STRNN despite that
STRNN also incorporates spatial and temporal contexts. The major
reason is that learning a unified framework for two highly corre-
lated mobility prediction and time prediction tasks improves the
model performance. Besides, STRNN even has a worse performance
than GRU model because STRNN fuses the spatial-temporal infor-
mation using the linear combination of two context matrices thus
failing to model the nonlinearlity relationship of spatial and tem-
poral information. Moreover, DeepMove achieves the best results
among all the baseline methods. It is because other than being able
to capture the sequential transitions with spatial-temporal context,
it is also able to capture users’ periodic patterns.

Third, our DeepJMT model outperforms all the baseline methods
on three datasets. Compared to DeepMove, DeepJMT uses a hierar-
chical RNN structure which is more capable of capturing mobility
regularities and temporal patterns and incorporates more context
information, and thus DeepJMT achieves better performance. Deep-
JMT still works when some types of context information are not
available, but we observe that removal of each model component
would lead to different degrees of performance degradation on all
three datasets. This indicates that all the components of DeepJMT
contribute to the model performance. Specially, we find that the
performances of DeepJMT-Se and DeepJMT-Sp drop drastically
compared to DeepJMT. This justifies our motivation that neigh-
boring locations can reflect the semantics of a location and hier-
archical RNN structures can capture the long term dependency
while preserving the mobility semantics. Besides, DeepJMT-Pe and
DeepJMT-So also result in a worse performance which illustrates
the effectiveness of considering the periodicity and social relation-
ship information.

The results for time prediction task for baseline models and
DeepJMT variants are shown in Figure 5a and 5b respectively. We
have the following observations. First, Hawkes and self-correcting

process perform consistently worse than RNN based temporal pro-
cess methods, which indicates that time evolution is very compli-
cated and a manually specified conditional intensity function might
not truly reflect the underlying time evolution process. Second,
although RMTPP and IntensityRNN have relatively the same perfor-
mance on mobility prediction, RMTPP outperforms IntensityRNN
for time predition. This suggests that using intensity function is
more suitable for modeling temporal process compared to directly
predicting the time. Third, for all the model variants of DeepJMT,
the performance doesn’t change quite much, which might be be-
cause the mobility prediction intrinsically rely on more context
information that the time prediction task does.

5.3 Model Analysis
5.3.1 Effect of Joint Learning Paradigm. In DeepJMT, the underly-
ing strategy is to use a joint learning paradigm for mobility and
time prediction, i.e., location predictor and time predictor operate
in parallel, which we believe is better than to perform mobility and
time prediction tasks in sequence. To evaluate the effectiveness
of this strategy, we consider another two training paradigms of
performing mobility prediction and time prediction:

• DeepJMT-Pipe: we first train the model only for mobility
prediction task. After that, we use the trained model to get a
predicted location with the highest probabilities. Then we
use the predicted location to extract spatial and temporal
features to train another regressionmodel for time prediction.
In other words, the mobility prediction and time prediction
tasks are processed in a pipeline manner.

• DeepJMT-Divide: In this paradigm, location and time pre-
diction are still trained in an end-to-end manner with the
loss the same as Equation 18. The difference is that mobility
prediction and time prediction are not performed in parallel.
Specifically, location predictor first produces the predicted
location, and then the predicted location and temporal in-
formation are sent to another RNN to model the intensity
function and then perform time prediction.

The experimental results for mobility prediction and time pre-
diction on the three datasets are shown in the first two rows in
Table 3 and Figure 5c, respectively.

(a) baseline models (b) model variants (c) joint learning paradigm (d) location and time information

Figure 5: Time prediction results in terms of MAE on three datasets

Table 3: Effect of joint learning paradigm and time information on mobility prediction

Methods NYC TKY IST
HR@5 HR@10 HR@20 MAP HR@5 HR@10 HR@20 MAP HR@5 HR@10 HR@20 MAP

DeepJMT-Pipe 0.4069 0.4901 0.5508 0.1580 0.4014 0.4822 0.5585 0.1220 0.2505 0.3187 0.3981 0.0905
DeepJMT-Divide 0.4020 0.4830 0.5443 0.1550 0.3985 0.4809 0.5560 0.1208 0.2450 0.3136 0.3917 0.0882
DeepJMT-NoTime 0.3924 0.4721 0.5346 0.1568 0.3983 0.4810 0.5567 0.1204 0.2456 0.3137 0.3920 0.0905
DeepJMT 0.4122 0.4924 0.5536 0.1623 0.4050 0.4876 0.5622 0.1240 0.2541 0.3226 0.3997 0.0928

We find that the performance of DeepJMT outperforms the other
two models trained with different strategies for both mobility pre-
diction and time prediction. Specially, there is a significant per-
formance drop in DeepJMT-Pipe and DeepJMT-Divide models for
the time prediction task, and DeepJMT also provides better per-
formance for mobility prediction task. This is because in the joint
learning paradigm, the sequential dependency encoder is trained
in a multi-task learning framework. Since mobility prediction and
time prediction are highly correlated, the multi-task learning frame-
work would encourage the sequential dependency encoder to learn
a better latent representation of a user’s mobility records. In other
words, separating these two predictors in sequence is not a good
choice for two highly correlated tasks.

5.3.2 Effect of Time and Location Information. In the DeepJMT
model, location information and time information are transformed
into location and time embeddings, respectively, and they then are
both sent as the input to the sequential dependency encoder. We
believe that the interplay of the location information and the time
information can complement and enhance each other in the sequen-
tial dependency encoder, which enables the model to better encode
the mobility regularities and temporal patterns. To verify the effects
of the time information and the location information, we evaluate
the mobility prediction performance of DeepJMT trained without
the time information (we denote this variant DeepJMT-NoTime) and
also the time prediction performance of DeepJMT trained without
the location information (we denote this variant DeepJMT-NoLoc).
Specifically, the timestamp of each mobility record is not provided
in DeepJTM-NoTime and the location identification is not provided
in DeepJMT-NoLoc. Note that we do not evaluate mobility pre-
diction performance of DeepJMT-NoLoc because it is unrealistic
to predict the mobility without using any location information in
historical records.

The results on the three datasets for mobility prediction and
task prediction are shown in the third row in Table 3 and Figure 5d,

respectively. We observe that DeepJMT, i.e., the model trained given
both location and time information, achieves the best performance
over all three datasets. With either type of information removed,
the performance becomes worse for both tasks. It demonstrates that
the time information and the location information can complement
and enhance each other for mobility and time prediction.

5.4 Sensitivity of Parameters
We investigate the influence of different parameter settings of the
DeepJMT model on mobility and time prediction performance.
Specifically, we evaluate the sensitivity of four parameters: the
location embedding size, the user embedding size, the time embed-
ding size and the dimension of the hidden state in the sequential
dependency encoder. We vary the user embedding size and the
location embedding size with values in range {20, 40, 60, 80, 100,
120, 140}, time embedding size with values in range {10, 20, 30, 40,
50, 60, 70} and the dimension of the hidden state with values from
range {50, 75, 100, 125, 150, 175, 200}. Except for the parameters
being tested, we set the other parameters with their default values.
Due to the space limitation, we only report the experimental results
on the IST dataset and similar trends can be observed on the NYC
and the TKY datasets.

Figure 6 presents the performance comparison when we vary the
values of model parameters. In general, we find that using a larger
embedding size would have more powerful representation ability
and improve the performance. But it also increases the complexity of
the model and makes it prone to overfit. In our experiments, we set
the dimension as reported in Section 5.1.2 considering the trade-off
between the effectiveness and the computational cost. In addition,
we observe the four different parameters have a relatively small
impact on the performance, which demonstrates the robustness of
our proposed DeepJMT model.

(a) user embedding size (b) location embedding size

(c) time embedding size (d) hidden state dimension

Figure 6: Performance with varying parameters on IST

6 CONCLUSION
In this paper, we propose a novel context-aware deep model called
DeepJMT for both mobility and time prediction. DeepJMT is com-
posed of a sequential dependency encoder, a spatial context ex-
tractor, a periodicity context extractor and a social & temporal
context extractor. In the model framework, we manage to utilize
spatial neighbors and historical mobility records as context infor-
mation and leverage the social relationship to learn more mobility
and temporal evidence from friends. DeepJMT model is capable
of capturing user mobility regularities and temporal patterns and
achieves significant improvement over the state-of-the-art on real-
world datasets. In the future, we plan to discover different fusion
approaches for different context information and incorporate some
other information such as user comments.

ACKNOWLEDGMENTS
This researchwas conducted in collaborationwith Singapore Telecom-
munications Limited and supported by the Singapore Government
through the Industry Alignment Fund - Industry Collaboration
Projects Grant. Cheng Long’s work is supported by MOE Tier 1
RG20/19 (S).

REFERENCES
[1] Chen Cheng, Haiqin Yang, Michael R. Lyu, and Irwin King. 2013. Where You Like

to Go Next: Successive Point-of-Interest Recommendation. In IJCAI. 2605–2611.
[2] Sung Chiu, Dietrich Stoyan, Wilfrid Kendall, and J Mecke. 2013. Stochastic

Geometry and Its Applications.
[3] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility:

user movement in location-based social networks. In KDD. 1082–1090.
[4] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In EMNLP. 1724–1734.

[5] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-
Rodriguez, and Le Song. 2016. Recurrent Marked Temporal Point Processes:
Embedding Event History to Vector. In KDD. 1555–1564.

[6] Nan Du, Le Song, Manuel Gomez Rodriguez, and Hongyuan Zha. 2013. Scalable
Influence Estimation in Continuous-Time Diffusion Networks. In NIPS. 3147–
3155.

[7] Jie Feng, Yong Li, Chao Zhang, Funing Sun, Fanchao Meng, Ang Guo, and Depeng
Jin. 2018. DeepMove: Predicting Human Mobility with Attentional Recurrent
Networks. InWWW. 1459–1468.

[8] Shanshan Feng, Gao Cong, Bo An, and Yeow Meng Chee. 2017. POI2Vec: Geo-
graphical Latent Representation for Predicting Future Visitors. InAAAI. 102–108.

[9] Shanshan Feng, Xutao Li, Yifeng Zeng, Gao Cong, Yeow Meng Chee, and Quan
Yuan. 2015. Personalized Ranking Metric Embedding for Next New POI Recom-
mendation. In IJCAI. 2069–2075.

[10] Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. 2013. Exploring temporal effects
for location recommendation on location-based social networks. In RecSys. 93–
100.

[11] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

[12] Huayu Li, Yong Ge, Richang Hong, and Hengshu Zhu. 2016. Point-of-Interest
Recommendations: Learning Potential Check-ins from Friends. In KDD. 975–984.

[13] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the Next
Location: A Recurrent Model with Spatial and Temporal Contexts. In AAAI.
194–200.

[14] Yiding Liu, Tuan-Anh Pham, Gao Cong, and Quan Yuan. 2017. An Experimen-
tal Evaluation of Point-of-interest Recommendation in Location-based Social
Networks. Proceedings of VLDB 10, 10 (2017), 1010–1021.

[15] Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. 2016. Hierarchical
Question-Image Co-Attention for Visual Question Answering. In NIPS. 289–297.

[16] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In EMNLP. 1412–1421.

[17] Wesley Mathew, Ruben Raposo, and Bruno Martins. 2012. Predicting future
locations with hidden Markov models. In Ubicomp. 911–918.

[18] Anna Monreale, Fabio Pinelli, Roberto Trasarti, and Fosca Giannotti. 2009.
WhereNext: a location predictor on trajectory pattern mining. In KDD. 637–
646.

[19] Yosihiko Ogata. 1998. Space-Time Point-Process Models for Earthquake Occur-
rences. Annals of the Institute of Statistical Mathematics 50, 2 (1998), 379–402.

[20] Adam Sadilek, Henry Kautz, and Jeffrey P. Bigham. 2012. Finding Your Friends
and Following Them to Where You Are. InWSDM. 723–732.

[21] Yi Tay, Anh Tuan Luu, and Siu Cheung Hui. 2018. Multi-Pointer Co-Attention
Networks for Recommendation. In KDD. 2309–2318.

[22] W. R. Tobler. 1970. A Computer Movie Simulating Urban Growth in the Detroit
Region. Economic Geography 46, sup1 (1970), 234–240.

[23] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

[24] Yingzi Wang, Nicholas Jing Yuan, Defu Lian, Linli Xu, Xing Xie, Enhong Chen,
and Yong Rui. 2015. Regularity and Conformity: Location Prediction Using
Heterogeneous Mobility Data. In KDD. 1275–1284.

[25] Fei Wu and Zhenhui Li. 2016. Where Did You Go: Personalized Annotation of
Mobility Records. In CIKM. 589–598.

[26] Shuai Xiao, Mehrdad Farajtabar, Xiaojing Ye, Junchi Yan, Xiaokang Yang, Le
Song, and Hongyuan Zha. 2017. Wasserstein Learning of Deep Generative Point
Process Models. In NIPS. 3250–3259.

[27] Shuai Xiao, Junchi Yan, Xiaokang Yang, Hongyuan Zha, and Stephen M. Chu.
2017. Modeling the Intensity Function of Point Process Via Recurrent Neural
Networks. In AAAI. 1597–1603.

[28] Caiming Xiong, Victor Zhong, and Richard Socher. 2017. Dynamic Coattention
Networks For Question Answering. In ICLR.

[29] Junchi Yan, Xin Liu, Liangliang Shi, Changsheng Li, and Hongyuan Zha. 2018.
Improving Maximum Likelihood Estimation of Temporal Point Process via Dis-
criminative and Adversarial Learning. In IJCAI. 2948–2954.

[30] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudré-Mauroux. 2019. Revisit-
ing User Mobility and Social Relationships in LBSNs: A Hypergraph Embedding
Approach. InWWW. 2147–2157.

[31] Di Yao, Chao Zhang, Jian-Hui Huang, and Jingping Bi. 2017. SERM: A Recurrent
Model for Next Location Prediction in Semantic Trajectories. In CIKM. 2411–
2414.

[32] Quan Yuan, Gao Cong, ZongyangMa, Aixin Sun, and Nadia Magnenat-Thalmann.
2013. Time-aware point-of-interest recommendation. In SIGIR. 363–372.

[33] Quan Yuan, Wei Zhang, Chao Zhang, Xinhe Geng, Gao Cong, and Jiawei Han.
2017. PRED: Periodic Region Detection for Mobility Modeling of Social Media
Users. InWSDM. 263–272.

[34] Chao Zhang, Jiawei Han, Lidan Shou, Jiajun Lu, and Thomas F. La Porta. 2014.
Splitter: Mining Fine-Grained Sequential Patterns in Semantic Trajectories. Pro-
ceedings of VLDB 7, 9 (2014), 769–780.

[35] Ali Zonoozi, Jung-jae Kim, Xiao-Li Li, and Gao Cong. 2018. Periodic-CRN: A
Convolutional Recurrent Model for Crowd Density Prediction with Recurring
Periodic Patterns. In IJCAI. 3732–3738.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Mobility Prediction
	2.2 Time Prediction

	3 Problem Formulation and Preliminaries
	3.1 Problem Formulation
	3.2 Temporal Point Process

	4 proposed model
	4.1 Sequential Dependency Encoder
	4.2 Spatial Context Extractor
	4.3 Periodicity Context Extractor
	4.4 Social & Temporal Context Extractor
	4.5 Training and Inference

	5 experiments
	5.1 Experimental Settings
	5.2 Performance Comparison
	5.3 Model Analysis
	5.4 Sensitivity of Parameters

	6 Conclusion
	Acknowledgments
	References

