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ABSTRACT

Multivariate time series often faces the problem of missing value. Many time series
imputation methods have been developed in literature. However, they all rely on an
entangled representation to model dynamics of time series, which may fail to fully
exploit the multiple factors (e.g., periodic patterns) presented in the data. Moreover,
the entangled representations usually have no semantic meaning, and thus they
often lack interpretability. In addition, many recent models are proposed to deal
with the whole time series to identify temporal dynamics, but they are not scalable
to long time series. Different from existing approaches, we propose TIDER, a novel
matrix factorization-based method with disentangled temporal representations that
account for multiple factors, namely trend, seasonality, and local bias, to model
complex dynamics. The learned disentanglement makes the imputation process
more reliable and offers explainability for imputation results. Moreover, TIDER is
scalable to long time series. Empirical results show that our method outperforms
existing approaches on three typical real-world datasets, especially on long time
series, reducing mean absolute error by up to 50%. It also scales well to long
datasets on which existing deep learning based methods struggle. Disentanglement
validation experiments further highlight the robustness and accuracy of our model.

1 INTRODUCTION

Multivariate time series analysis (e.g., forecasting (Zeng et al., 2021) and classification (Li et al.,
2022)) has a wide spectrum of applications like traffic flow forecasting (Liu et al., 2020), electricity
demand prediction (Kaur et al., 2021), motion detection (Laddha et al., 2021), health monitor-
ing(Tonekaboni et al., 2021), etc. Most of these multivariate time series analysis approaches typically
assume intact input for building models. However, real-world multivariate time series tends to have
missing values caused by factors like device malfunction, communication failure, or costly measure-
ment, leading to impaired performance of these approaches, or even rendering them inapplicable.

In light of this, many time series imputation methods have been proposed to infer missing values from
the observed ones. A multivariate time series, denoted as X ∈ RN×T , consists of N univariate time
series (called channels) spanning over T time steps. Hence, it offers two perspectives for imputation:
modeling cross-channel correlations and exploiting temporal dynamics. Earlier methods (Batista
et al., 2002; Acuna & Rodriguez, 2004; Box et al., 2015) either aggregate observed entries across
channels by estimating similarity between distinct channels, or solely exploit local smoothness or
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linear assumption in the same channel to fill in missing values. Since these methods lack the ability
of modeling nonlinear dynamics and complex correlations, they may not perform well in practice.

In recent years, deep learning based methods (Liu et al., 2019; Tashiro et al., 2021; Cini et al.,
2022) were proposed for time series imputation. These methods typically employ Recurrent Neural
Networks (RNNs) as the backbone to jointly model nonlinear dynamics along temporal dimension
(by updating hidden states nonlinearly over time steps) and cross-channel correlations (by mapping
xt ∈ RN from data space to hidden state space). These RNN-based imputation models achieve better
results by further combining with multi-task loss (Cao et al., 2018; Cini et al., 2022) or adversarial
training (Liu et al., 2019; Miao et al., 2021). Despite their success, these methods rely solely on a
single entangled representation (hidden state) to model dynamics. However, for many real-world
multivariate time series, their dynamics are rich combinations of multiple independent factors like
trend, seasonality (periodicity), and local idiosyncrasy (Woo et al., 2022). Modeling combinations of
these factors with a single entangled representation may not give good performance, as the entangled
representation has to compromise itself to explain multiple orthogonal patterns (like local changes or
exogenous interventions vs global patterns) together (Bengio et al., 2013). Furthermore, it becomes
exacerbated when seasonal patterns dominate, as RNNs lack the inductive bias to initiatively capture
periodicity (Hewamalage et al., 2021). In addition, the hidden states that these models learned
are entangled and complex combination of various components. Thus it is difficult for them to
provide interpretable information to explain imputation. Moreover, these methods require the entire
time series to be fed in to their models at each forward step, to capture temporal dynamics.This is
prohibitively costly for large T . Therefore, these methods are not applicable to long datasets.

To address these limitations, in this paper, we propose a novel multivariate time series imputation
method, Time-series Imputation with Disentangled tEmporal Representations (TIDER), in which we
explicitly model the complex dynamics of multivariate time series with disentangled representations
to account for different factors. We employ a low-rank matrix decomposition framework, and achieve
the disentanglement by imposing different forms of constraints on different representations which
compose the low-rank matrix. In particular, we introduce a neighboring-smoothness representation
matrix to explain the trend, a Fourier series-based representation matrix to define periodic inductive
bias, and a local bias representation matrix to capture idiosyncrasies specific to individual time
step. These disentangled representations offer greater flexibility and robustness to model the factors
contributed to the dynamics in time series. Another notable benefit of these semantically meaningful
disentangled representations is that they offer TIDER an interpretable perspective on imputation.
Moreover, TIDER is a scalable model. It can be applied to time-series datasets with large T and
achieve much better imputation performance. In summary, our contributions are as follows.

• We propose TIDER, a new multivariate time series imputation model, which is featured with
effective and explainable disentangled representations to account for various factors that
characterize the complex dynamics of time series. To the best of our knowledge, TIDER is
the first model to learn disentangled representations for multivariate time series imputation.

• TIDER is the first imputation model that introduces a learnable Fourier series-based repre-
sentation to capture periodic patterns inherent in time series data.

• Extensive experiments show that our proposed method outperforms the baseline imputation
methods in terms of effectiveness and scalability. Especially, for imputation task in long
time series, TIDER achieves more than 50% improvement in MAE, compared with the
best imputation baseline approach. Furthermore, TIDER is a scalable model. It can easily
handle long multivariate time series while existing deep-learning methods struggle. We also
demonstrate the explanability of the disentangled representations with several case studies.

2 RELATED WORK

Early time series imputation methods based on simple statistical strategies focus on exploiting
local smoothness of temporal dimension as well as the similarity between different channels. For
example, SimpleMean/SimpleMedian (Fung, 2006) imputes missing values by averaging, and
KNN (Batista et al., 2002) aggregates cross-channel observations to fill in missing slots with k-nearest
neighbors. Linear dynamics-based imputation methods, including linear imputation and state-space
models (Durbin & Koopman, 2012), have also been employed. MICE (Van Buuren & Groothuis-
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Oudshoorn, 2011) explores the idea of estimating missing slots with chain equations. These methods
typically lack the ability of exploiting nonlinear dynamics and complex correlation across channels.

A recent trend is to apply deep learning, particularly RNNs, to better capture the nonlinearity.
BRITS (Cao et al., 2018) treats missing values as variables which participate in bidirectional RNN
back-propagation and are updated with hidden states. GAIN (Yoon et al., 2018) combines Generative
Adversarial Nets (GAN) and RNNs for imputation. NAOMI (Liu et al., 2019) merges RNNs and
adversarial training strategies. SSGAN (Miao et al., 2021) is a semi-supervised GAN-based model
which uses label information. GRIN (Cini et al., 2022) fuses graph message passing into GRU
structure to learn spatial-temporal patterns. All these methods model dynamics based on a single
entangled representation, which is insufficient to capture multiple factors underlying time series,
especially when seasonality emerges, since RNNs lack the inductive bias to initiatively capture
periodicity (Hewamalage et al., 2019). Moreover, these approaches are not scalable to long datasets
since they have to process time series of whole length T at each forward step to capture temporal
dynamics. Thus, they do not perform well, or are even not applicable to long time-series data.

Our proposed TIDER is based on low-rank matrix factorization (MF) (Yu et al., 2016; Bjorck et al.,
2021). Vanilla MF-based models impute missing entries by learning latent factors U, V to exploit
low-rank structure. However, they overlook the temporal continuity. To address this, TRMF (Yu et al.,
2016) imposes autoregressive constraints on temporal factor V. However, similar to aforementioned
methods, TRMF also relies on entangled representation to account for all factors underlying the
dynamics. In contrast, TIDER introduces multiple disentangled representations. It achieves the
disentanglement by enforcing different forms of constraints into different representations.

3 PROBLEM STATEMENT

Given N univariate time series data x1,x2, . . . ,xN ∈ RT collected over T time steps, we represent
it with a multivariate time series matrix X ∈ RN×T , whose n-th row represents n-th univariate time
series (channel) xn and t-th column denotes the observation of all time series at time step t. The
multivariate time series matrix X is incomplete and a fraction of entries are missed. We aim to infer
missing values from the observed ones, and we denote the mask matrix as M ∈ {0, 1}N×T , where

Mij =

{
1, if Xij is observed,
0, otherwise.

(1)

4 METHODOLOGY

4.1 METHOD OVERVIEW

The core idea of TIDER is to decompose multivariate time series X into two latent factors U and V,
such that U only preserves features unique to each channel whereas V is determined by multiple
disentangled representations that jointly capture temporal dynamics. We employ such factorization
for two main reasons: 1) univariate time series channels (rows of X) are usually highly correlated; 2)
observations at different time steps (columns of X) exhibit strong temporal dynamics. The benefits
of our design are twofold: 1) cross-channel correlations are decoupled since U only preserves
channel-specific features 2) time-related information is isolated into V, and it enables us to model
the potentially complex temporal dynamics with multiple explainable disentangled representations.

Figure 1 shows the architecture of TIDER. We adopt a low-rank matrix decomposition framework
to factorize multivariate time series matrix X into two latent factors U, V. U is a correlation-
decoupled matrix which accounts for channel-specific patterns, while V is a matrix for time-related
information. Since temporal dynamics underlying real-world time series can be rich and complex
combinations of multiple factors, e.g., trend and seasonality, modeling them merely through an
entangled representation matrix will lead to model degradation. Woo et al. (2022) proposes that
under mild assumptions, seasonality and trend can be treated as independent factors in time series
generating process, and Cohen (2013) suggests that independence can be used as a proxy criterion
for disentanglement. Inspired by them, we propose to model V with multiple disentangled repre-
sentations, each accounting for one particular factor. We achieve the disentanglement by enforcing
distinct forms of constraints on different representations, which introduce distinct inductive biases

3



Published as a conference paper at ICLR 2023

Figure 1: Architecture of the proposed method TIDER. X is the multivariate time series matrix.
U represents a correlation-decoupled matrix. Vt,Vs, and Vb denote trend representation matrix,
seasonality representation matrix and bias representation matrix, respectively.

Figure 2: Visualization of time series decomposition. (a) is the raw time series, whereas (b), (c), and
(d) are its decomposed trend, seasonality, and residual component. The grey bars on the right of each
subplot show the relative scales of the components. Each grey bar represents the same length.

into these representations and make them more liable to capture specific semantically-independent
patterns. More specifically, we consider three important factors: trend, seasonality, and bias, which
are specified by three representation matrix Vt, Vs, Vb, respectively. Figure 2 illustrates an example
of decomposing a time series into these three factors. Trend representation matrix Vt ∈ RD×T

captures the intrinsic trend which changes gradually and smoothly, and seasonality representation
matrix Vs ∈ RD×T illustrates the periodic patterns hidden in temporal dynamics. Vt and Vs jointly
determine the dynamics driven by endogenous factors. Bias representation matrix Vb ∈ RDb×T

characterizes variations specific to each time step. Intuitively, Vb explains the individual idiosyncratic
behaviors of time steps, which are orthogonal to global dynamics but shared across channels at a
given time step. Hence, we treat it differently from Vt, Vs and interpret it as a residual term matrix,
i.e., X−U(Vt +Vs) ≈ 1N×Db

Vb. Mathematically, we formulate the objective of TIDER as

minimize ∥(X−UaV)⊙M∥2 + λtft(Vt) + λbfb(Vb) + η1∥U∥2 + η2∥V∥2,

Ua = [ U 1 ] ∈ RN×(D+Db), V =

[
Vt +Vs

Vb

]
∈ R(D+Db)×T ,

(2)

where Ua is the augmented matrix of latent factor U ∈ RN×D, ft and fb are corresponding inductive
bias constraint functions imposed on Vt and Vb. M is the mask matrix introduced in Sec 3. η1∥U∥2,
η2∥V∥2 are used to regularize the magnitude of latent factors, and λt, λb, η1, η2 are corresponding
weights for each term. When training is completed, we use the learned U to get Ua, and the learnt
Vt, Vs, and Vb to form V. Ua and V are then used to generate the imputed time series X̂ as

X̂ij =

{
Xij , Mij = 1,

(UaV)ij , Mij = 0.
(3)

We are now ready to elaborate on the details of the three disentangled representation matrices.
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4.2 TREND REPRESENTATION MATRIX

Trend representation matrix Vt characterizes the intrinsic trend of time series. The evolution patterns
dominated by Vt are supposed to change gradually and smoothly in the absence of accidents
or extreme events such as holidays (we will consider these external interventions and exogenous
influences in Vb). Based on this, we impose a smoothness constraint on Vt as

ft(Vt) =

T∑
j=2

∥vj
t − vj−1

t ∥2, (4)

where vj
t is the j-th column of Vt. Equation 4 encourages close representations of two adjacent time

steps in latent space, which will result in a smooth change in data space. We only impose constraints
on two consecutive time steps to account for short-term patterns here whereas long-term patterns are
explained by Vs. This is in contrast with TRMF (Yu et al., 2016) which uses one temporal matrix to
account for both short-term and long-term patterns by imposing regression constraint.

4.3 SEASONALITY REPRESENTATION MATRIX

Real-world time series often demonstrate seasonal patterns. For instance, traffic flow exhibits strong
daily and weekly seasonality due to regularity of human activities, such as commuting patterns.
Solar power production presents clear periodic characteristics caused by climate seasonality and
meteorological conditions. Motivated by this and Fourier analysis in Section A.1.2, we propose to
model the seasonality of time series by parameterizing representation matrix Vs with Fourier basis.

Vs is a matrix with size D × T , we represent each row with a superposition of 2K sinusoidal waves
(K ≪ T ). More formally, let A, B ∈ RD×K be two learnable coefficient matrices, and ϕsin,
ϕcos ∈ RT×K be the corresponding Fourier basis matrices, which are defined as

A =

[ | | |
a1 a2 . . . aK
| | |

]
, ϕsin =

[ | | |
sin(1ωt) sin(2ωt) . . . sin(Kωt)

| | |

]
, (5)

B =

[ | | |
b1 b2 . . . bK

| | |

]
, ϕcos =

[ | | |
cos(1ωt) cos(2ωt) . . . cos(Kωt)

| | |

]
, (6)

where t = [1, . . . , T ]⊤. For one specific time-series with period P , ω is calculated as 2π/P .

Then the seasonality representation matrix Vs can be defined as

Vs = Aϕ⊤
sin +Bϕ⊤

cos. (7)

In other words, Vs is spanned by Fourier basis ϕsin and ϕcos. In particular, the d-th row of Vs,
denoted by (vd

s)
⊤ , has the form

(vd
s)

⊤ =

K∑
k=1

Ad,k sin(kωt)
⊤ +

K∑
k=1

Bd,k cos(kωt)
⊤, (8)

which is a truncated Fourier series with coefficients Ad,k, Bd,k. This elaborate design of Vs provides
meaningful periodic inductive bias, which enables our model to capture seasonal patterns more
accurately and effectively, by learning coefficient matrices A, B from data.

4.4 BIAS TEMPORAL REPRESENTATION MATRIX

The representation matrices Vt, Vs presented so far jointly determine the dynamics driven by
endogenous factors of multivariate time series. However, there are also various external factors
(e.g., holidays, weekdays/weekends) that could affect real-world time series. These external factors
usually occur at specific time points and yield local variations within short time period, thus they are
independent of endogenous dynamics and cannot be captured by Vt and Vs. And also, these factors
impact nearly equally on all channels. To account for these local variations, inspired by the idea of
user and item bias explored in collaborative filtering (Lü et al., 2012), we propose to learn another
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bias representation matrix Vb ∈ RDb×T , where the representation of a specific time step is shared by
all channels. In addition, we impose an autoregressive constraint on Vb in temporal dimension since
the impact caused by local variation usually lasts for a short duration. Let vt be the t-th column of
Vb and L be the maximum time lag indicating duration, we define the constraint function as follows,

fb(Vb) =

T∑
t=L+1

∥∥∥∥∥vt
b −

L∑
l=1

Wlv
t−l
b

∥∥∥∥∥
2

, (9)

where W = {Wl ∈ RDb×Db | l = 1 . . . L} is a group of learnable parameters. In our setting, Db

and L are small numbers, thus group W only incurs very few extra parameters.

4.5 ADAPTIVE WEIGHT FOR TREND AND SEASONALITY

In Section 4.1, we use the additive form Vt + Vs to characterize the influence of endogenous
impacting factors. This implicitly assumes that trend and seasonality components contribute equally
to endogenous dynamics. But in practice the importance of trend and seasonality can vary drastically
across data sources, which is illustrated in Figure 2. To address this, we adopt a learnable parameter
α ∈ (0, 1) to adaptively adjust the weight for these two components, which leads to a weighted
additive form αVt + (1− α)Vs. The temporal matrix V in Equation 2 then becomes:

V =

[
αVt + (1− α)Vs

Vb

]
. (10)

5 EXPERIMENTS

In this section, we evaluate the performance of TIDER by comparing with existing multivariate
time series imputation methods, in terms of imputation accuracy and scalability. We also show
the explanability of TIDER with several case studies. Hyperparameter sensitivity experiments are
included as well to show that TIDER performs steadily under different hyperparameter settings. The
code of TIDER is available at https://anonymous.4open.science/r/TIDER-527C.

5.1 EXPERIMENTAL SETUP

Baseline Methods We compare our model with popular baselines used in the literature and recently-
proposed methods, including statistical models (SimpleMean, KNN, MICE), MF-based methods
(MF, MF+L2, SoftImpute, TRMF), and deep learning approaches (BRITS, GAIN, NAOMI, Sin-
gleRes, SAITS, CSDI). Details and settings of these baselines can be found in Section A.3. In
addition, we also include TIDER (no W), a variant of TIDER without the learnable parameter α, to
verify the effectiveness of the adaptive weight introduced in Section 4.5.

Datasets We use three typical real-world datasets. Guangzhou is a small one where all methods can
fit in. Solar-energy shares along time-span while Westminster is one with large N. These datasets
represent three different types of multivariate time series (small, large T, large N), and these three
types can cover most of the multivariate time series. For more details, please refer to Section A.2.

Evaluation Metrics We adopt RMSE, MAE, and MAPE to evaluate the imputation accuracy of all
compared methods. Details of these three metrics can be found in Section A.4.

Training Setup We randomly remove a subset of entries from X as validation and test datasets
separately. Let r be the missing rate variable, the ratio of training/validation/test is (0.9− r)/0.1/r.
For each model we run experiments 7 rounds on every dataset and report the imputed results averaged
over these 7 runs. All experiments are conducted on a Linux workstation with a 32GB Tesla V100
GPU. For more detailed hyperparameter settings, please refer to Table 7.

5.2 IMPUTATION ACCURACY COMPARISON

Table 1 and Table 2 show the imputation accuracy of all methods on three datasets with different
missing rate r. OOM indicates out of memory. The meaning of asterisk and improvement are illustrated
in Section A.3. Our proposed TIDER achieves the best performance in most cases in terms of the
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Table 1: Imputation accuracy of different methods with missing rate r = 0.2

Method Guangzhou Solar-energy Westminster
(r = 0.2) RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SimpleMean 10.24 8.023 0.396 3.352 2.433 4.527 5.233 4.247 0.410
KNN 6.540 4.731 0.242 2.701 1.748 2.324 2.249 1.611 0.147
MF 5.642 4.301 0.188 3.769 2.447 4.243 2.275 1.641 0.137
MF+L2 5.400 4.074 0.177 2.761 1.918 2.760 2.109 1.523 0.134
SoftImpute 5.876 4.465 0.217 2.692 1.903 3.051 2.347 1.645 0.141
MICE 5.097 3.859 0.161 2.647 1.763 2.372 2.638 2.014 0.169
TRMF 4.563 3.407 0.148 3.212 2.010 2.937 1.903 1.370 0.119
BRITS 4.416 3.003 0.139 2.617 1.861 2.677 2.154* 1.488* 0.136*
GAIN 4.976 3.451 0.154 2.803 1.917 2.501 1.947 1.403 0.121
SAITS 4.407 3.025 0.140 OOM OOM OOM 1.893 1.366 0.119
CSDI 4.301 2.991 0.135 OOM OOM OOM 1.886 1.361 0.116
NAOMI 5.173 4.013 0.167 OOM OOM OOM OOM OOM OOM
SingleRes 4.997 3.979 0.172 OOM OOM OOM OOM OOM OOM

TIDER (no W) 4.431 3.229 0.142 1.872 0.893 2.522 1.981 1.426 0.127
TIDER 4.168 3.098 0.132 1.676 0.874 2.227 1.867 1.354 0.115
Improvement (%) 3.092 / 2.222 35.96 50.00 4.174 1.007 0.514 0.862

three metrics. The superiority of TIDER is much more significant in Solar-energy, the dataset with
large T . In addition, we obtain similar improvements on other long time series. We report experiments
on another two datasets in Section A.5. In addition, we observe that the imputation accuracy of most
methods drops as missing rate r increases, which is as expected since fewer patterns are available.

Among all baseline methods, CSDI has the best performance on most datasets, and deep-learning
methods (BRITS, GAIN, SAITS, CSDI) usually perform better than other baselines. However,
TIDER outperforms them on each dataset. Especially on the solar-energy dataset, where time span
T is 52, 560 and many deep learning methods run into OOM on a 32GB-memory GPU, TIDER is
still applicable and achieves the best performance by large margins. This could be attributed to our
model’s ability to model multiple factors in representation space in a disentangled way.

We observe that MF-based models can all work for long time series. The difference between these
models lies in constraints on U and V. Compared with other MF-based baselines, TRMF outperforms
others in most cases, since it intuitively captures auto-regressive dynamics. However, since TRMF
employs merely an entangled representation, it cannot model complex dynamics well. TIDER (no
W) and TIDER utilize disentangled features like trend, seasonality and local bias to rebuild patterns
for time-series, which exploit explanatory temporal factors, thus achieving better imputation result.
Furthermore, TIDER performs better than TIDER (no W). This is consistent with our previous
analysis that trend and seasonality components might not contribute equally to global dynamics.

5.3 SCALABILITY ANALYSIS

We study the scalability of different methods in memory usage and training time. In particular, we
compare our method with state-of-the-art models, BRITS, NAOMI, SingleRes, SAITS, and CSDI.
Figure 3-(a) and Figure 3-(b) present the memory footprints of different methods against channel
number N and time span T . It can be seen from Figure 3-(a) that memory usage of NAOMI and
SingleRes grow rapidly with very steep slopes, and that of BRITS also grows quickly whereas
TIDER needs much less memory. Similarly, Figure 3-(b) shows that the memory usage of NAOMI,
SingleRes, and SAITS also grows fast as T increases. Again, TIDER needs the least amount
of memory. There is also a gap between the curves of CSDI (BRITS) and TIDER in Figure 3,
which is overwhelmed by the magnitude of NAOMI and SingleRes. We present these gaps in
Section A.9. Lastly, Figure 3-(c) demonstrates the running time of different methods for 100 epochs
when processing a 100× 100 matrix. TIDER runs much faster than RNNs-based methods. Notably,
TIDER outperforms BRITS by almost an order of magnitude. This is also true for the total time taken
by entire training process. Furthermore, the space complexity of BRITS is O(N(N + T ))(Vaswani
et al., 2017) while that of TIDER is O(N +T ). The complexity of NAOMI was not established and is
tricky to analyze due to its complex divide-and-conquer strategy, but its complicated procedure yields
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Table 2: Imputation accuracy of different methods with missing rate r = 0.4

Method Guangzhou Solar-energy Westminster
(r = 0.4) RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

SimpleMean 9.949 7.901 0.384 3.259 2.412 4.889 5.243 4.259 0.407
KNN 6.712 4.955 0.252 2.724 1.835 2.874 2.391 1.714 0.159
MF 7.671 5.844 0.246 4.111 2.887 5.851 2.476 1.807 0.153
MF+L2 7.324 5.553 0.235 2.617 1.80 2.977 2.157 1.593 0.134
SoftImpute 5.811 4.465 0.209 2.536 1.849 3.311 2.333 1.637 0.145
MICE 7.119 5.417 0.235 2.756 1.823 3.517 2.755 2.113 0.175
TRMF 6.119 4.617 0.198 3.407 2.199 3.586 2.014 1.453 0.126
BRITS 4.874 3.335 0.158 2.842 1.985 3.146 2.180* 1.527* 0.138*
GAIN 5.550 3.671 0.192 2.639 1.883 3.117 2.337 1.711 0.145
SAITS 4.839 3.391 0.159 OOM OOM OOM 1.998 1.453 0.129
CSDI 4.813 3.202 0.157 OOM OOM OOM 1.982 1.437 0.124
NAOMI 5.986 4.543 0.222 OOM OOM OOM OOM OOM OOM
SingleRes 6.051 4.705 0.252 OOM OOM OOM OOM OOM OOM

TIDER (no W) 4.708 3.469 0.155 1.697 0.878 3.152 2.013 1.466 0.125
TIDER 4.764 3.527 0.152 1.679 0.838 2.735 1.959 1.422 0.121
Improvement (%) 2.182 / 3.185 33.79 54.03 4.836 1.160 1.055 2.419

(a) (b) (c)

Figure 3: Scalability test on Westminster dataset: (a) Memory usage of different methods varies over
N from 0 to 5000 with fixed T = 100; (b) Memory usage of different methods varies over T from
100 to 700 with fixed N = 100; (c) The average running time taken by different methods for every
100 epochs when processing a 100× 100 matrix.

more intermediate variables and thus results in more memory consumption, as empirically validated
by our experiments. In conclusion, this experiment demonstrates the scalability of our model.

5.4 ABLATION ANALYSIS

To verify the effectiveness of our proposed disentangled representation matrices, we conduct an
ablation study on Guangzhou dataset by removing one of the trend, seasonality, and bias representation
matrices while leaving the rest of the model unchanged. The ablative results with missing rate
r = 0.2 (0.4) are presented in Table 3. We find that the model performance drops no matter which
representation is removed, which validates that all of our proposed disentangled representations play
an important role in imputation and jointly enhance the performance of the final model.

Table 3: Ablation Analysis of TIDER on Guangzhou dataset.

Name RMSE MAE MAPE

Vs +Vb 7.241 (7.497) 5.388 (5.459) 0.272 (0.294)
Vt +Vb 5.680 (6.392) 4.311 (4.899) 0.190 (0.214)
Vs +Vt 5.297 (5.999) 4.014 (4.520) 0.170 (0.201)
TIDER 4.168 (4.764) 3.098 (3.527) 0.132 (0.152)
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(a)

(b)

(c)

(d)

Time Step

Figure 4: Case study of disentanglement. (a) is the original time-series, whereas (b),(c) and (d)
represent the generated intrinsic trend, seasonality, and local variation within a period of time.

5.5 CASE STUDY OF DISENTANGLEMENT

This section is to demonstrate that the learned representations achieve disentanglement and offer
explanability. We first visualize a time-series from Guangzhou dataset and its learnt patterns, namely,
trend patterns u⊤Vt, seasonality patterns u⊤Vs, and bias patterns 1⊤Vb, where u⊤ is the time-series
representation (a row of U). Figure 4 shows that the learned representations generate semantically
meaningful patterns. Figure 4-(b) shows a gradually changing curve that corresponds to trend
patterns, whereas Figure 4-(c) exhibits clear periodicity, and Figure 4-(d) manifests more idiosyncratic
behaviors. Each of the displayed patterns captures information from a particular semantic perspective,
which verifies that the learned representations Vt, Vs, Vb exhibit independence and disentanglement.

In order to further show TIDER’s interpretability, we conduct experiments on synthetic time-series
where one pair of time-series are composed of the same trend but different seasonality, while another
pair of time-series are composed of the same seasonality but a different trend. We visualize the ground
truth trend and seasonality patterns, together with the learned ones. Their results are depicted in
Figure 5 and Figure 6. We can clearly find that the learned disentangled components are very similar
to the ground truth, while the disentangled patterns that are supposed to be close to each other indeed
look similar (similar slopes on the trend components, together with similar amplitudes and periods
on the seasonality components). This further supports TIDER’s explainability of disentanglement.

5.6 HYPERPARAMETER SENSITIVITY

We analyze the impact of four key hyperparameters (D, K, Dd, and P ) on performance of TIDER,
and present the results in Figure 7, 8, 9, and 10, respectively. We observe that TIDER is relatively
stable under different hyperparameter settings. Even for hyperparameter P (period), TIDER exhibits
consistent imputation performance, although interpretability may be compromised. Therefore, if
accurate imputation is the primary objective, extensive hyperparameter tuning may not be necessary, as
TIDER is robust to variations in hyperparameters. However, when both accuracy and interpretability
are important, determining the appropriate time series period is critical. This can often be achieved
through prior knowledge or other periodic detection models (Fan et al., 2022; Wang et al., 2022).

6 CONCLUSION

In this paper, we propose a scalable multivariate time series imputation method, TIDER, with multiple
novel inductive biases under the framework of low-rank matrix factorization. In contrast to existing
imputation approaches, TIDER adopts semantically meaningful disentangled representations to
account for multiple factors of a time series. In particular, it enables capturing periodicity with a

9
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novel Fourier basis-based representation and allows to identify local time variation with a time bias
representation. TIDER’s superiority is verified by experimental results. Moreover, it scales well to
long time series where the existing methods struggle or even cannot fit. In the future, it is interesting
to investigate how to use the meaningful disentangled representations for forecasting tasks and how
to design constraints on U when channel information is available. Furthermore, since now we use
hyperparameter tuning techniques to decide P in Vs, how to obtain P adaptively in a data-driven
way is also worth further investigation.

7 REPRODUCIBILITY STATEMENT

We provide an open-source implementation of our proposed model, TIDER, at https://
anonymous.4open.science/r/TIDER-527C. Hyperparameter setting is shown in Sec-
tion A.8. Users can download the code and run TIDER easily.
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A APPENDIX

A.1 PRELIMINARY

A.1.1 LOW-RANK MATRIX FACTORIZATION

Given a matrix X ∈ RN×T with rank k ≪ min{N,T}, the low-rank matrix factorization aims to
factorize X as the product of two low-rank matrices U ∈ RN×k and V ∈ Rk×T ,

X = UV. (11)
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Table 4: Summary of dataset statistics.

Name Number of channels (N ) Number of time steps (T )

Guangzhou1 214 500
Solar-Energy2 137 52,560
Westminster3 7,489 744

This low-rank matrix factorization can be extended to the circumstance where the true rank of X
is larger than k. In such a case, we use a metric ℓ to measure the discrepancy between X and the
approximated product UV as

ℓ(X,UV) = ∥X−UV∥2, (12)

where ∥ · ∥ denotes the Frobenius norm of a matrix. This low-rank approximation is fairly reasonable
in practice, since many real-world structural observation matrices are low rank. This has been widely
adopted and extensively studied in recommender systems (Takács et al., 2008; Chen et al., 2020).
In the context of multivariate time series data, we propose to adopt low-rank matrix factorization
for two reasons: 1) univariate time series channels (the rows of X) are usually highly correlated; 2)
observations at different time steps (the columns of X) exhibit strong dependencies.

A.1.2 FOURIER SERIES

Fourier analysis(Stein & Shakarchi, 2011) states that any real-valued periodic function f(x) can be
represented by an infinite series of sinusoidal functions, known as the Fourier series. These sinusoidal
functions have their own coefficients and distinct frequencies. More formally, the Fourier series for a
function f(x) with its period P can be described as

f(x) =

∞∑
n=0

an cos(nωx) +

∞∑
n=0

bn sin(nωx), (13)

where ω = 2π/P , and an, bn ∈ R are the corresponding coefficients. Since sin(nωx) and cos(nωx)
functions are orthogonal to each other and are able to span over the entire functional space, they are
also called Fourier basis.

A.2 DATASET DETAILS

• Guangzhou Traffic Data. This dataset(Chen et al., 2018) contains traffic speed of 214
anonymous urban road segments for 5 days with a 10-minute sampling rate in Guangzhou,
China. It results in a 214× 500 multivariate time series matrix.

• Solar-Energy Production Data. This dataset consists of solar power production records of
137 PV plants in Alabama, USA sampled every 10 minutes. It results in a 137 × 52, 560
data matrix.

• Westminster Uber Movement Data. This dataset contains hourly averaged speed of road
segments in Westminster, in Jan 2020, released by Uber. Dimension of its data matrix is
7, 489× 744.

The dataset statistics are summarized in Table 4.

A.3 DETAILS OF BASELINE MODELS

The details of baseline methods are briefly summarized as follows. For SimpleMean, KNN, and
SoftImpute, we use their implementation provided by the package fancyimpute whereas for BRITS,
GAIN, SAITS, CSDI, NAOMI and SingleRes, we use the source codes released by their authors.

• SimpleMean(Acuna & Rodriguez, 2004)4 It imputes missing entries with mean values of
corresponding columns.

4https://github.com/iskandr/fancyimpute
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• KNN(Batista et al., 2002)5 It first finds k nearest rows with the highest similarity score to
the target row, and then uses the weighted sum of these k rows for imputation.

• SoftImpute(Mazumder et al., 2010)6. It is a matrix completion approach based on iterative
soft thresholding of Singular Value Decomposition (SVD).

• MICE(Azur et al., 2011)7. It is the abbreviation for Multivariate Imputation by Chained
Equations, a widely-used R package for imputation.

• MF(Takács et al., 2008). It applies low-rank matrix factorization without any constraint on
the latent factors.

• MF+L2(Takács et al., 2008). It applies low-rank matrix factorization with L2 regularization
on U and V.

• TRMF(Yu et al., 2016). It applies low-rank matrix factorization with an autoregressive
constraint imposed on temporal matrix V.

• BRITS(Cao et al., 2018)8. It is a time series imputation method based on Bidirectional
Recurrent Neural Nets and a time decay mechanism.

• GAIN(Yoon et al., 2018)9. It employs Generative Adversarial Nets (GAN) for imputation.

• SAITS(Du et al., 2022)10. It imputes missing values based on self-attention mechanism.

• CSDI(Tashiro et al., 2021)11. It utilizes score-based diffusion models to explore correlations
between observed values and for imputation.

• NAOMI(Liu et al., 2019)12. It combines Bidirectional Recurrent Neural Nets with adversarial
training to offer non-autoregressive style imputation. The divide-and-conquer strategy is
adopted.

• SingleRes(Liu et al., 2019)13. It is the autoregressive counterpart of NAOMI.

In our experiments, we find that BRITS with the suggested batch size and RNN hidden size will
result in OOM (Out of Memory) on the Westminster dataset. Thus we reduce the batch size to 1 and
the dimension of RNN to 10 such that it could just fit the 32 GB GPU on that dataset, we use an
asterisk symbol to indicate its results in Table 1 and Table 2, in which the Improvement is calculated
as follows,

Improvement =
best_baseline− TIDER∗

best_baseline
× 100% (14)

where best_baseline represents the best performance among all the compared baseline models,
TIDER∗ stands for the better one between TIDER and TIDER (no W).

A.4 DETAILS OF METRICS

Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE) are adopted to evaluate the imputation accuracy of all compared methods. These three
metrics are defined as

RMSE =

√∑
ij∈Ω(Xij − X̂ij)2

|Ω|
,MAE =

∑
ij∈Ω |Xij − X̂ij |

|Ω|
,MAPE =

∑
ij∈Ω

|Xij − X̂ij |
|Ω| · |Xij |

.

(15)
where Xij denotes the ground-truth values, X̂ij is the imputed values, and Ω is the index set of
missing entries to be evaluated.

5https://github.com/iskandr/fancyimpute
6https://github.com/iskandr/fancyimpute
7https://github.com/amices/mice
8https://github.com/caow13/BRITS
9https://github.com/jsyoon0823/GAIN

10https://github.com/WenjieDu/SAITS
11https://github.com/ermongroup/CSDI
12https://github.com/felixykliu/NAOMI
13https://github.com/felixykliu/NAOMI
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(a)

(b)

(c)

(d)

(e)

Figure 5: Disentanglement validation on synthetic dataset. Time series are composed of the same
trend but different seasonalities. (a) shows the raw time series. (b) and (d) show the trend and
seasonality components TIDER has learned. (c) and (e) depict the ground trend and seasonality
components which compose the raw time series.

(a)

(b)

(c)

(d)

(a)

Figure 6: Disentanglement validation on synthetic dataset. Time series are composed of different
trends but the same seasonality. (a) shows the raw time series. (b) and (d) show the trend and
seasonality components TIDER has learned. (c) and (e) depict the ground trend and seasonality
components which compose the raw time series.
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Table 5: Imputation accuracy of different methods with missing rate r = 0.2, for long time series.

Method HouseHold Power Beijing Climate
(r = 0.2) RMSE MAE MAPE RMSE MAE MAPE

SimpleMean 100.6 70.07 10.69 418.5 295.9 6.521
KNN 91.57 38.55 4.313 406.9 184.5 1.141
MF 87.88 33.75 0.885 404.3 177.4 1.005
MF+L2 82.62 29.79 0.791 393.5 170.4 1.033
SoftImpute 85.61 33.75 0.651 386.5 172.9 1.043
MICE 79.21 31.27 0.642 292.2 111.9 0.827
TRMF 89.14 35.39 0.685 312.7 110.1 0.811
BRITS 66.98 25.61 0.335 101.9 66.42 0.611
GAIN 70.04 25.92 0.498 125.4 62.37 0.607
SAITS OOM OOM OOM OOM OOM OOM
CSDI OOM OOM OOM OOM OOM OOM
NAOMI OOM OOM OOM OOM OOM OOM
SingleRes OOM OOM OOM OOM OOM OOM
TIDER (no W) 56.36 20.20 0.351 185.8 99.78 0.754
TIDER 53.95 18.29 0.284 60.65 32.77 0.532
Improvement (%) 24.15 28.58 15.22 40.48 47.45 12.28

A.5 ADDITIONAL EXPERIMENTS FOR IMPUTATION ACCURACY COMPARISON ON LONG TIME
SERIES

As Table 1 and Table 2 shows, TIDER outperforms the baseline models by large margins on long
time-series dataset Solar-Energy. In order to further verify its performance stability in imputing long
multivariate time-series data, we conduct additional experiments on another two long time-series:

• HouseHold Power dataset 14. This dataset contains every minute’s household electric
consumption measurements gathered in a house located in Sceaux from December 2006 to
November 2010. The size of this long time-series matrix is 7× 2075259.

• Beijing Climate dataset 15. This dataset records the PM2.5 concentration, dew point,
temperature, pressure, combined wind direction, cumulative wind speed, cumulative hours
of snow, and cumulative hours of rain in Beijing, from Jan 1st, 2010 to Dec 31st, 2014. The
size of this long time-series matrix is 7× 43824.

The imputation accuracy of all models on these two long time series is shown in Table 5 and Table 6.
Similar to the observation made in Section 5.2, many deep-learning-based models that perform well in
short time-series dataset Guangzhou (eg, CSDI, SAITS) run into out of memory on these two datasets,
while our proposed method can easily handle them and achieve significantly better performance.
These results further support the scalability of our model, as well as its effectiveness in imputing long
time-series datasets.

A.6 DISENTANGLEMENT VALIDATION ON SYNTHETIC DATASET

In order to further show TIDER’s interpretability, we conduct experiments on synthetic time-series
where one pair of time-series are composed of the same trend but different seasonality, while another
pair of time-series are composed of the same seasonality but a different trend. We visualize the ground
truth trend and seasonality patterns, together with the learned ones. Their results are depicted in
Figure 5 and Figure 6. We can clearly find that the learned disentangled components are very similar
to the ground truth, while the disentangled patterns that are supposed to be close to each other indeed
look similar (similar slopes on the trend components, together with similar amplitudes and periods
on the seasonality components). This further supports TIDER’s explainability of disentanglement.

14https://archive.ics.uci.edu/ml/datasets/Individual+household+electric+
power+consumption

15https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
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Table 6: Imputation accuracy of different methods with missing rate r = 0.4, for long time series.

Method HouseHold Power Beijing Climate
(r = 0.4) RMSE MAE MAPE RMSE MAE MAPE

SimpleMean 105.2 68.17 9.064 459.8 313.8 6.454
KNN 96.07 42.68 5.362 397.8 179.4 1.053
MF 90.70 36.72 1.494 388.4 164.9 1.015
MF+L2 86.71 34.06 1.262 384.7 162.8 1.013
SoftImpute 85.72 33.61 0.698 385.1 168.0 0.912
MICE 83.46 32.48 0.672 281.1 111.3 0.820
TRMF 101.5 57.36 0.985 312.5 110.5 0.807
BRITS 69.82 27.82 0.398 163.0 75.69 0.676
GAIN 74.47 26.93 0.512 177.3 73.79 0.658
SAITS OOM OOM OOM OOM OOM OOM
CSDI OOM OOM OOM OOM OOM OOM
NAOMI OOM OOM OOM OOM OOM OOM
SingleRes OOM OOM OOM OOM OOM OOM
TIDER (no W) 64.44 25.53 0.391 221.4 112.0 0.872
TIDER 59.07 20.01 0.356 80.87 55.85 0.581

Improvement (%) 15.40 25.70 10.55 50.39 24.31 11.70

(a) (b) (c)

Figure 7: The performance of TIDER changes against D.

(a) (b) (c)

Figure 8: The performance of TIDER changes against K.

(a) (b) (c)

Figure 9: The performance of TIDER changes against Dd.
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(a) (b) (c)

Figure 10: The performance of TIDER changes against P .
Table 7: Hyperparameters of TIDER for the three datasets.

Name (r = 0.2) Guangzhou Solar-Energy Westminster

batch size 32 32 512
epoch 500 500 500
D 50 50 150
Db 2 2 2
η1 0.01 0.01 0.01
η2 0.01 0.01 0.01
λt 0.1 0.01 0.01
λb 0.2 0.1 0.1
K 20 2 15
ω π

84
π
84

π
12

Name (r = 0.4) Guangzhou Solar-Energy Westminster

batch size 32 32 512
epoch 500 500 500
D 50 50 150
Db 2 2 2
η1 0.01 0.01 0.01
η2 0.01 0.01 0.01
λt 0.1 0.01 0.01
λb 0.2 0.1 0.1
K 20 2 15
ω π

84
π
84

π
12

A.7 HYPERPARAMETER SENSITIVITY

In this section, we study the performance change of TIDER under different hyperparameter settings.
Figure 7 shows TIDER’s hyperparameter sensitivity under different D. Figure 8 draws the perfor-
mance of TIDER changing against K, the number of sinusoidal waves in Vs. Figure 7 depicts the
accuracy curves of TIDER varying over different Dd. Figure 10 is used to study the performance
stability of TIDER under different periods in Vs. It can be seen that TIDER is rather stable under
different hyperparameter settings. Therefore, if our target is merely for accurate imputation, we might
not need to pay much effort or spend much time on hyperparameter tuning, since TIDER is stable
among different hyperparameter settings. If we target both accuracy and interpretability, then the
only hyperparameter we need to figure out is the period of time series. This often can be acquired by
our prior knowledge or by other periodic detection models Wen et al. (2021).

A.8 HYPERPARAMETER SETTING

We implement TIDER using Python 3.6 and Pytorch 1.9, and optimize the model parameters using
Adam (Kingma & Ba, 2014) with a learning rate 1e− 3. We use gird search to select the optimal
hyperparameters (D, K, Dd, P ) on the validation datasets. However, as we have observed in
Section 5.6 and Section A.8, the imputation performance of TIDER is relatively steady among
different hyperparameter settings. Thus other hyperparameter sets might also offer desirable results.
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(a) (b)

Figure 11: Supplementary scalability test on Westminster dataset. (a) Memory usage between TIDER
and CSDI varies over N from 0 to 5000 with fixed T = 100; (b) Memory usage between TIDER
and BRITS varies over T from 100 to 700 with fixed N = 100.

The general principle and guidelines on parameter setting are as follows:

• ω: This hyperparameter is involved in the seasonality representation matrix. ω is in close
relation with the time-series period P . At present, P is chosen by jointly using our prior
knowledge of different time series and hyperparameter tuning techniques. We first construct
a candidate list of P based on our knowledge of these time series and select the best one
according to performance on validation datasets. We set P for Guangzhou, Solar-Energy,
and Westminster datasets as 168, 168, and 24 respectively. In other words, the optimal ω for
these datasets are π

84 , π
84 and π

12 .
• D: Dimension for matrix U and Vt is also an important hyperparameter. Small D will lack

the ability to learn enough information while large D is prone to overfitting.
• λt, λb: These are the corresponding weights for the constraint functions of the trend repre-

sentation matrix and bias representation matrix, respectively. We tune them by making a
choice from a scale set {0.01, 0.1, 0.2, 0.5, 1.0}.

By following this principle, the optimal hyperparameters we obtained are listed in Table 7.

A.9 SUPPLEMENTAL SCALABILITY ANALYSIS

In Section 5.3, there is a little gap between memory usage of CSDI and TIDER in Figure 3(a),
and little gap between memory usage of BRITS and TIDER in Figure 3(b). In Figure 3-(a) (resp.
Figure 3-(b)) the memory usage gap between CSDI (resp. BRITS) and TIDER is overwhelmed by
the large magnitude of other methods. Thus, we zoom in to give a comparison in this section. As
depicted in Figure 11, there are still large memory usage gaps between TIDER and them, which
demonstrates the scalability superiority of our proposed TIDER.
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